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OBJECTIVE FUNCTION DEFINED IMPLICITLY BY THE3

SOLUTION OF A STEADY-STATE PROBLEM∗4

BENOÎT PASQUIER† AND FRANÇOIS PRIMEAU†5

SM1. Global marine phosphorus-cycling model. Here, we describe the dis-6

cretization of the phosphorus-cycling model that we use to demonstrate the perfor-7

mance of the F-1 algorithm. Specifically, we detail how the physical and biogeochem-8

ical mechanisms are converted into the discretized generic equation (1.1) by explicitly9

defining the state function F (x,p). In practice, we use the AIBECS package [SM20]10

to download the ocean circulation and generate the state function, F , the mismatch11

function f , and their derivatives.12

SM1.1. The ocean circulation. We use the control (CTL) circulation output13

from the Ocean Circulation Inverse Model (OCIM1) of DeVries [SM3]. The OCIM14

optimizes a steady-state circulation by assimilating oceanographic tracer data (see15

[SM5]), which include potential temperature, salinity, radiocarbon, and CFC-11. The16

resulting circulation thus effectively represents an estimate of the mean state of the17

global ocean circulation and is formulated as a sparse matrix, denoted here by TDIP,18

to facilitate rapid simulation of biogeochemical tracers. The circulation is embedded19

in an Arakawa B-grid with a 2◦× 2◦ resolution and 24 depth levels with thicknesses20

increasing from ∼25 m at the surface to ∼500 m for the deepest layer. (This amounts21

to 200 160 ocean grid cells.) In practice, we use the AIBECS package [SM20] to22

download the OCIM matrix.23

With the state of the system represented by the column vector x =

[
xDIP

xPOP

]
,24

the OCIM1 transport matrix is applied to the DIP vector only, xDIP. That is, the25

matrix–vector product, TDIP xDIP, yields the flux divergence of DIP due to the ocean26

circulation. In other words, TDIP xDIP is the discrete equivalent of ∇r · [u−K∇]xDIP27

in (3.1).28

SM1.2. The sinking particles. We now describe how TPOP, a sparse matrix29

representing the discrete equivalent of ∇ · w in (3.1), is created. At the bottom of30

each model box, the sinking velocity is hence defined by31

(SM1.1) w ≡ w′zbot + w0,32

where zbot is a vector of the depths of the bottom of each grid box and w is the33

vector of the magnitudes of the downward particulate velocity. Note that the w34

symbol defined in (SM1.1) is different from the w symbol used for (3.1), which was35

the 3D velocity vector. The flux-divergence operator, TPOP, is defined such that36

TPOP xPOP is the divergence of the sinking POP flux. The flux of sinking POP is37

approximated by wxPOP at the bottom of each model box.38
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The flux divergence is then approximated by the difference between the flux at39

the top and at the bottom of each box. Specifically, the sinking transport operator40

TPOP is defined by41

(SM1.2) TPOP ≡ ∆Z−1(UxPOP
− IxPOP

)W,42

where ∆Z is a diagonal matrix with diagonal ∆z, which is the vector of the depth43

thickness of each box, IxPOP is the identity matrix, and W is the diagonal matrix with44

diagonal w. The matrix UxPOP
consists of 1’s on a superdiagonal similar and is thus45

upper triangular. It is defined similarly to a shift matrix, such that it shifts indices to46

the boxes above, so that (UxPOP
− IxPOP

)WxPOP effectively yields the vector of the47

differences between the flux of POP at the top and at the bottom of each grid box.48

Thus, TPOP, is a function of the parameters w′ and w0 only.49

SM1.3. The state function. The rate of change of the system is defined by50

(SM1.3) F (x,p) ≡
[
−TDIP xDIP −U + R + C
−TPOP xPOP + U −R

]
,51

where the column vectors U and R are the uptake and remineralization rates, respec-52

tively, converting DIP to POP and back (U and R in (3.1)).53

The discrete equivalent of the uptake, remineralization, and geological restoring54

rates, as defined in (3.2), can be defined compactly by55

(SM1.4)


U ≡

x+
DIP

τ

x+
DIP

x+
DIP + k

(z ≤ z0)

R ≡ κxPOP

C ≡ 〈x
geo〉 − xDIP

τgeo

,56

where x+
DIP = xDIP if xDIP ≥ 0 and x+

DIP = 0 otherwise, ensuring that uptake only57

occurs for positive concentrations. (This is to avoid problems due to the hyperbolic58

term in the uptake when numerical noise generates negative concentrations.) Simi-59

larly, the (z ≤ z0) term ensures that uptake only occurs in the euphotic zone. (z60

is the vector of box depths, oriented positively downwards, and z0 ≡ 75 m is the61

approximate depth of the bottom of the euphotic layer in the OCIM1 grid.)62

Note that we used two shortcuts to simplify notation in (SM1.4) that we use63

throughout this section: (i) Boolean expressions are assumed to convert automati-64

cally to the real-valued 0 or 1, and (ii) binary vector operations are assumed to be65

elementwise. Thus, for example, in (SM1.4), each entry of x+
DIP is divided by the66

corresponding entry in (x+
DIP + k), and (z ≥ z0) is a vector of 0’s and 1’s with its67

entries multiplied by the corresponding entries of x+
DIP/(x

+
DIP + k).68

SM2. Derivatives with respect to the state. The scope of the F-1 algorithm69

may appear restricted by the fact that it requires the user to supply the Jacobian70

function, ∇xF . However, the Jacobian function, ∇xF , which is required for Newton-71

like inner solvers, may be easy to derive analytically. Additionally, because many72

discretizations for PDEs use local low-order finite difference schemes that produce73

sparse Jacobian matrices, ∇xF (x,p) is likely sparse, so that it can be computed74

numerically in only a few dual passes using a graph-coloring algorithm (see, e.g.,75

[SM10]). Furthermore, it is likely that the Jacobian of the nonlinear part of F is76
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even sparser, e.g., diagonal or made of blocks that are diagonal, allowing for it to be77

computed in even less dual passes.78

For instance, in the context of the global marine phosphorus cycling model (sec-79

tion SM1), the Jacobian of the state function F defined by (SM1.3) can be evaluated80

in just two dual evaluations. Consider the partition of F (x,p) into the sum of a linear81

part (with respect to x), denoted by −T(p)x, where82

(SM2.1) T(p) ≡
[
TDIP 0

0 TPOP

]
83

is a large block-diagonal sparse matrix, and a local part, G(x,p), which consists of84

the uptake, U , remineralization, R, and geological restoring, C (see section SM1).85

The Jacobian of the local part, ∇xG(x,p), is then made of blocks that are diagonal,86

i.e.,87

(SM2.2) ∇xG(x,p) ≡
[
∇DIPC −∇DIPU ∇POPR

∇DIPU −∇POPR

]
88

where ∇DIPC, ∇DIPU , and ∇POPR are the derivatives of C, U , and R with respect89

to xDIP or xPOP, as indicated, and are diagonal matrices because C, U , and R90

are local rates. Because these are diagonals, ∇xG(x,p) can be computed in two91

dual evaluations, one where ε is added to each entry of xDIP, and one where ε is92

added to each entry of xPOP. The full Jacobian, ∇xF (x,p) is then simply given by93

−T(p)+∇xG(x,p). (This is for example implemented under the hood in the AIBECS94

package to generate ∇xF automatically from TDIP, TPOP, and the local sources and95

sinks [SM20].)96

A similar potential restriction to the scope of the F-1 algorithm is that it requires97

the user to supply ∇xf . However, an analytical formula for ∇xf(x,p) is straightfor-98

wardly available if f(x,p) is expressed as the sum of the quadratics, as is the case99

for the objective function of our phosphorus-cycling model. That is, the state and100

parameter parts of f(x,p) are usually separable, so that f(x,p) = f(x) + f(p), and101

the state part, f(x), usually takes the generic form f(x) = 1
2δx

T Ω δx, where the102

precision matrix Ω is diagonal, so that103

(SM2.3) ∇xf(x,p) = δxTΩ104

can be readily used as the analytical formula supplied to the F-1 algorithm. (Here105

we have abused notation to distinguish the state and parameter parts of f(x,p)106

depending on its arguments, similar to the multiple-dispatch paradigm of the Julia107

language.) Hence, we argue that in many scientific applications, the F-1 algorithm108

can be used as a fully automatic differentiation tool with little additional effort, e.g.,109

compared to the HYPER or FD2 algorithms.110

SM3. Comment on the computation time partition. We note that in Fig-111

ure 4, the time spent by the inner solver is attributed to time spent on the gradient.112

This is because the Newton-Trust-Region algorithm we use for the optimization com-113

putes the gradient first, then the Hessian, and finally the objective, in that specific114

order. Thus, the inner solver is always invoked by the gradient first, making s(p) (and115

the factors of A in the case of the F-1 algorithm) available for the subsequent Hessian116

and objective computations. The objective function is computed last because it is not117

needed in Newton’s method for minimization and is merely evaluated for recording118

the progress of the optimization. Hence, the time attributed to the objective func-119

tion, f̂(p), is merely the time of a single evaluation of f(s,p), which is negligibly120
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small relative to the other computations (the corresponding bars are not visible in121

Figure 4).122

SM4. Extending real numbers for differentiation.123

SM4.1. Complex numbers. Since its discovery [SM12], and despite its ele-124

gance and efficiency, it took nearly 30 years before the complex-step algorithm for125

differentiation was described in the literature, by Squire and Trapp [SM24]. More126

recently, Cleve Moler wrote a simple blog post [SM16] describing the technique on the127

MathWorks website in 2013, and Martins et al. [SM13] wrote an article dedicated to128

it. Consider a simple generic real-valued function g, which depends on a real-valued129

scalar variable. The Taylor expansion of g at x in the ih direction, where i is the130

imaginary unit and h is a small real-valued scalar, is given by131

(SM4.1) g(x+ ih) = g(x) + ih∇g(x) +
(ih)2

2
∇2g(x) + . . .︸ ︷︷ ︸
→0 if h→0

132

In practice, if h is small enough, floating-point arithmetic would ensure that only the133

first two terms remain (specifically, if g(x) is indistinguishable from g(x)−h2∇2g(x)/2134

for the finite-precision machine, assuming the higher-order terms are even smaller).135

This way, one can approximate the first derivatives to numerical precision, by136

taking the imaginary part of g(x+ ih), i.e.,137

(SM4.2) ∇g(x) ≈
=
[
g(x+ ih)

]
h

,138

where =(x) is the imaginary part of x. In particular, because there is no difference139

involved and because the relative sizes of the real and imaginary parts do not interfere140

within the complex-number type, there is no need to worry about truncation error,141

so that one can take an arbitrarily small h (e.g., h = 10−100).142

The complex-step algorithm is straightforward to implement in many scientific143

computing languages, including Julia, MATLAB, Octave, Scilab, Python, IDL, and144

Fortran, which all have a built-in complex-number type. And we note that Martins145

et al. [SM13] suggested that complex-step differentiation is equivalent to algorithmic146

differentiation (also known as automatic differentiation).147

SM4.2. Dual Numbers. Dual numbers were first introduced by Clifford [SM2],148

with the “dual” term being coined by Study [SM25]. A dual unit number, denoted149

ε, is introduced, and defined by the simple rule that ε2 = 0 (instead of i2 = −1 for150

complex numbers) and is used here as an efficient numerical tool to compute first151

derivatives (see, e.g., [SM17]).152

Using dual numbers to evaluate a derivative is cleaner and simpler than the153

complex-step differentiation of (SM4.2), as154

(SM4.3) ∇g(x) = D
[
g(x+ ε)

]
,155

where D(x) is the dual part (the ε part) of x. The advantage of using dual numbers for156

our approach lies in the fact that Taylor expansions of the first order in the non-real157

direction are exact, i.e.,158

(SM4.4) g(x+ ε) = g(x) + ε∇g(x) +
ε2

2
∇2g(x) + . . .︸ ︷︷ ︸

=0

159
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is a strict equality. (A property that is not true for Taylor expansions in the complex160

plane.) In other words, dual numbers provides a robust mathematical tool to represent161

infinitesimal quantities with ε.162

Another advantage compared to the complex step algorithm is that there is no163

need to introduce a small step size, h, although we note that the behavior of dual164

numbers can be reproduced using complex numbers by choosing h sufficiently small165

for the complex Taylor series to automatically truncate terms of order greater than166

1. However, we note that the dual-step algorithm offers a cleaner, more modern167

numerical differentiation tool that can be applied to a broader set of functions (e.g.,168

functions that internally invoke complex numbers).169

We note the dual numbers have a formal algebraic interpretation, whereby they170

extend the real numbers to an algebra over the reals of dimension 2, where ε is the171

image of the polynomial X 7→ X in the quotient of the univariate polynomial ring with172

real-valued coefficients, R[X], over the ideal generated by the X 7→ X2 polynomial. In173

other words, the dual numbers can be identified with R[X]/(X2) just like the complex174

numbers can be identified with R[X]/(X2 + 1).175

SM4.3. Hyper Dual Numbers. Hyper dual numbers are an extension of dual176

numbers used to evaluate second derivatives (e.g., [SM8, SM6, SM7, SM17]). The177

nonreal components are defined by ε1 and ε2 such that ε21 = ε22 = 0 and ε1ε2 6= 0.178

Consider g(x, y), a real-valued function of two variables. Its Taylor expansion in the179

(ε1, ε2) direction is given by180

(SM4.5) g(x+ ε1, y + ε2) = g(x, y) + ε1∇xg(x, y) + ε2∇yg(x, y) + ε1ε2∇xyg(x, y),181

and its Taylor expansion in the (ε1ε2, 0) direction is given by182

(SM4.6) g(x+ ε1, y + ε2) = g(x, y) + ε1∇xg(x, y) + ε2∇xg(x, y) + ε1ε2∇xxg(x, y),183

Hence, the terms of the Hessian of g can be evaluated via184

(SM4.7) ∇2g(x, y) = H

([
g(x+ ε1 + ε2, y) g(x+ ε1, y + ε2)
g(x+ ε2, y + ε1) g(x, y + ε1 + ε2)

])
,185

where H(x) is the hyperdual part of x (the ε1ε2 coefficient). Note that hyperdual186

numbers can also be used to evaluate the terms of the gradient just like dual numbers,187

e.g., via188

(SM4.8) ∇g(x, y) = H1

([
g(x+ ε1, y)
g(x, y + ε1)

]T)
,189

where H1(x) is the ”first hyperdual” part of x (the ε1 part). Generalizing these190

formulas to the case of functions of more than two variables is straightforward.191

We note that the hyperdual numbers also have an algebraic interpretation. They192

form an algebra over the reals of dimension 4, as the quotient of the multivariate193

polynomial ring with real-valued coefficients, R[X,Y ], over the ideal generated by194

the (X,Y ) 7→ X2 and (X,Y ) 7→ Y 2 polynomials. In that quotient, ε1 and ε2 are195

the images of the polynomials (X,Y ) 7→ X and (X,Y ) 7→ Y . In other words, the196

hyperdual numbers can be identified with R[X,Y ]/(X2, Y 2).197

SM5. Solving dual and hyperdual linear systems. As noted in section 2198

and section 3, the CSD, DUAL, and HYPER algorithms must invoke the inner solver199
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with complex-valued, dual-valued, and hyperdual-valued state and parameters. How-200

ever, assuming the inner solver invokes Newton-type steps, it must solve complex,201

dual, or hyperdual linear systems, respectively. This Appendix describes an efficient202

strategy for solving dual-valued and hyperdual-valued linear systems, and illustrates203

its execution in Julia using packages that were developed specifically for this study:204

DualMatrixTools [SM18] and HyperDualMatrixTools [SM19].205

At first, it would appear that in order to solve the linear systems involving a dual-206

valued matrix of the type M = A + εB, the factorization of the dual-valued matrix207

M is necessary. However, doing so is not straightforward and is likely not efficient:208

(i) there is no guarantee that the underlying package that performs factorizations209

can handle dual-valued sparse matrices (e.g., UMFPACK can only handle real and210

complex numbers), and (ii) performing dual-valued factorizations is computationally211

more expensive than performing real-valued factorizations. We note that this is also212

the case for solving complex-valued linear systems, and that a similar technique —213

avoiding complex-valued factorizations — can be used for solving complex-valued214

linear systems, as long as the imaginary part is small (as is the case for the complex-215

step differentiation method).216

Instead, a better strategy is to only factorize A, the real part of M. Because we217

are using dual numbers, the Taylor expansion of the inverse of A + εB is given by218

(SM5.1) (A + εB)−1 = (Ix − εA−1B)A−1,219

where Ix is the identity matrix (with its size, n× n, indicated by the x superscript).220

Equation (SM5.1) allows to solve dual-valued linear systems using only the factors of221

the real part, A, via two real-valued forward and back substitutions.222

For the DUAL algorithm to work in our implementation, i.e., for the DUAL223

algorithm to be able to invoke the inner solver with dual-valued state and parameters,224

we developed DualMatrixTools [SM18], to perform the shortcut provided by (SM5.1)225

under the hood. That is, it allows to factorize the real part only of M (using the226

factorize function) and to solve the corresponding dual-valued linear system (using227

the backslash function, \) via (SM5.1) in a single line of code for each of those two228

operations. We note that this package can be used in other applications and, again,229

emphasize its ease of use.230

In the case of the HYPER algorithms, we provide a hyperdual equivalent of231

(SM5.1), which shows that only the inverse of A is required for computing the inverse232

of a hyperdual-valued matrix M = A + ε1B + ε2C + ε1ε2D. In fact, the inverse of233

M is given by234

(SM5.2) M−1 =
[
Ix−ε1A−1B−ε2A−1C−ε1ε2A−1(D−CA−1B−BA−1C)

]
A−1.235

Just like for dual-valued linear systems, we developed a Julia package, Hyper-236

DualMatrixTools [SM19], to solve hyperdual-valued systems under the hood. In a237

single line of code, one can factorize the real part of M using factorize or solve a238

hyperdual-valued linear system using backslash (\). This package has been optimized239

to compute hyperdual-valued forward and back substitutions in just four real-valued240

forward and back substitutions, as can be derived from (SM5.2).241

SM6. The pitfalls of black-box approaches. In this appendix, we describe242

what happens when invoking the solver with complex, dual or hyperdual parameters243

as a black box. Here we show that not only is this naive approach slower, it directly244

introduces numerical errors. That is, we describe what happens when using the245
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DUAL, HYPER, and CSD algorithms. We emphasize that when using an iterative246

algorithm that was written for real-valued numbers, it is imperative to set additional247

tolerances on the non-real part(s) of the iterates. Setting these tolerances, which248

control when the loop terminates, can be complicated. But before diving in the249

details, we first recall Newton’s method in the real case.250

Starting from an initial estimate x0, Newton’s method is based on the recursion251

relation252

(SM6.1) xl+1 = xl −∇xF (xl,p)−1F (xl,p),253

where ∇xF (xl,p) is the Jacobian evaluated at the lth iterate of the state, xl. If all254

goes well, the iterates converge to the steady state, i.e., liml→∞ xl = s(p).255

In practice, when invoked for real-valued parameters, the solver we use applies256

Shamanskii’s method, which improves on Newton’s method by not updating the Jaco-257

bian at each iterate, increasing computational performance. Additionally, the solver258

we use also performs an Armijo line search if the Shamanskii step overshoots the259

solution (the solver we use was adapted from the nsold solver from Kelley [SM11]).260

That is, the Armijo line search looks for the minimum of the norm of F (x,p) along261

the Shamanskii-step direction via a quadratic approximation. However, for the sake262

of clarity, here we only detail the classical Newton’s method. (The solver we actually263

use is available in the AIBECS package [SM20].)264

We now explore the convergence of the Newton’s method when the parameters are265

dual-valued (i.e., what happens when using the DUAL algorithm). We thus replace266

p with p + εej . Although we start from the real-valued x0 = s(p), the iterates xl267

include a potentially non-trivial dual part for l > 0, since the dual part of p+ εej will268

spread to xl at each Newton iteration. We thus partition xl into its real and dual269

parts, such that270

(SM6.2) xl = al + εbl,271

where we omit the p + εej argument for brevity.272

The dual-valued F (al + εbl,p + εej) can be expressed via the Taylor expansion273

of F at (al,p) in the (εbl, εej) direction, which gives274

(SM6.3) F (al + εbl,p + εej) = F (al,p) + εAlbjk + ε∇pF (al,p)ej ,275

where Al ≡ ∇xF (al,p) is a real-valued Jacobian matrix. Similarly, the dual-valued276

Jacobian matrix ∇xF (al + εbl,p + εej) can also be expressed by a dual Taylor ex-277

pansion. However, we need not detail all its terms, and instead simply denote its real278

part by Al and its dual part by the unspecified matrix Bl, respectively, so that279

(SM6.4) ∇xF (al + εbl,p + εej) = Al + εBl.280

Note that Al = ∇xF (al,p) is also the real part of the dual-valued Jacobian.281

Evaluating the iterations of (SM6.1) with dual-valued parameters, it appears that282

the real part has exactly the same form as the original real-valued iterations, except283

with al symbols in place of xl symbols. Assuming we start with a0 = s(p) means284

al = s(p) throughout. This is expected because the dual-valued call to the solver will285

not improve the real-valued solution.286

The non-real part however contains additional terms, with287

bl+1 = bl −A−1l Albl −A−1l ∇pF (al,p)ej

+ A−1l BlA
−1
l F (al,p),

(SM6.5)288
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where we have used the analytical formula for the inverse of a dual-valued matrix,289

(SM5.1). Note the first and second terms, which should cancel each other. These290

were intentionally left for the reader to appreciate how a black-box approach will ex-291

ecute unnecessary computations, both slowing down the computation and potentially292

introducing additional numerical errors (bl would seldom be strictly exactly equal to293

A−1l Albl without an infinite precision computer.) Additionally, the last term should294

vanish because al = s(p) (by definition of s(p)). However, this term will not vanish295

exactly with finite precision machines, so that the black-box approach will compute296

this term and potentially introduce errors while doing so.297

In our implementation, the tolerance for the dual part is decided by the ratio of298

the norm of the dual-part of the Newton step to the norm of the dual part. Specifically,299

the solver loop terminates if ‖bl − bl−1‖/‖bl−1‖ is smaller than 10−7. Starting from300

the solution s(p), the dual-type black-box approaches will thus invoke the inner solver301

with one iteration to converge to the dual-valued solution, and another iteration to302

check that the dual-part has converged, thus requiring two iterations overall.303

We note that in this specific context, one could get away with forgetting to set304

a tolerance for the dual part only because the inner solver effectively converges in a305

single iteration. However, this is not the case for all iterative algorithms taken as a306

black box, as illustrated by the ∼100-iterations lag of the non-real part described by307

Martins et al. [SM13]. Therefore we consider that omitting these tolerances is not308

a reasonable approach. Conversely, we also note that setting too tight a tolerance309

for the non-real part could potentially result in a large (or even infinite) number310

of iterations for the solver loop to terminate, when in fact it oscillates over a small311

neighborhood of the solution until a small enough dual-valued step is randomly taken.312

We emphasize that all the arguments brought up in this appendix so far also apply to313

the complex-step algorithm. That is, the exact same phenomenon occurs when using314

the CSD algorithm. In comparison, the F-1 algorithm completely alleviates the need315

to set a tolerance for the dual part of the inner solver, since it does not invoke it.316

We now show that, in our context, the inner solver invoked with hyperdual-317

valued parameters converges in exactly two iterations (i.e., when using the HYPER318

algorithm). We give a brief outline of how the derivation goes, but leave its details out319

for brevity. Again, we consider the hyperdual parameters defined by pjk = p+ε1ej +320

ε2ek. Starting from the real-valued solution, s(p), just like in the dual case, the real321

part of the hyperdual state remains constant, equal to s(p), throughout the Newton322

iterations. The first iteration permeates hyperdual-values from the parameters into323

the first state iterate, x1. In fact, the ε1 and ε2 parts of the state converge in that first324

iteration, so that the ε1 and ε2 parts of s(pjk) are the ε1 and ε2 parts of x1. However,325

a second iteration is required for the ε1ε2 part to converge, because it requires that326

the previous state (in this case x1) contains the converged ε1 and ε2 parts. Thus,327

convergence of all the non-real parts requires exactly two iterations. This is because,328

unlike for the dual case, some of the non-real terms that include non-real parts of the329

state (the terms including bl in (SM6.5)) do not cancel out in the hyperdual case.330

This is also because the ε1ε2 part of xl+1 only depends on the real, ε1, and ε1 parts of331

xl. Just like in the dual case, we emphasize that the inner solver must check that the332

non-real parts have converged, so that the HYPER algorithm requires one additional333

Newton step to terminate, bringing the total number of iterations to three.334

Code and data availability. The state function, F , and the mismatch function,335

f , as well as their derivatives, were automatically generated using the AIBECS pack-336

age [SM20] or manually generated in the FastBGCParameterOptimization GitHub337

This manuscript is for review purposes only.
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repository. The ocean circulation was taken from the output of the control (CTL)338

run of the Ocean Circulation Inverse Model (OCIM1 [SM4]) and is available online339

in a MAT file (the MATLAB data format) on the website of Tim DeVries. The340

OCIM1 grid and transport matrix have been converted to Julia to be downloaded341

and used by the AIBECS package [SM20]. The mismatch of the state used the ob-342

jectively analyzed mean field of the phosphate concentration from the World Ocean343

Atlas 2018 (WOA18 [SM9]). The WOA18 data was downloaded and fitted to the344

OCIM grid using the WorldOceanAtlasTools package [SM22]. The F-1 algorithm is345

implemented in the F1Method package [SM21]. The CSD, FD1, DUAL, HYPER, and346

FD2 algorithms, the figures, and the underlying data that are shown in this study347

are contained in the FastBGCParameterOptimization GitHub repository. Dual- and348

hyperdual-valued factorizations and forward and back substitutions of sparse linear349

systems were performed using the DualMatrixTools [SM18] and HyperDualMatrix-350

Tools [SM19] packages, respectively. The optimizations were performed using the351

Optim package [SM14, SM15]. The concrete types defining the steady-state prob-352

lems and the steady-state solutions were built upon the DiffEqBase package [SM23].353

Benchmarks were performed with the BenchmarkTools and TimerOutputs packages.354

The diagram was created using the LATEXTikZ package [SM26]. Result figures were355

created using the PyPlot package. All the computations were performed using the356

Julia language [SM1].357
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