SUPPLEMENTARY MATERIALS: THE F-1 ALGORITHM FOR
EFFICIENT COMPUTATION OF THE HESSIAN MATRIX OF AN
OBJECTIVE FUNCTION DEFINED IMPLICITLY BY THE
SOLUTION OF A STEADY-STATE PROBLEM∗

BENOÎT PASQUIER† AND FRANÇOIS PRIMEAU†

SM1. Global marine phosphorus-cycling model. Here, we describe the dis-
etization of the phosphorus-cycling model that we use to demonstrate the perfor-
mance of the F-1 algorithm. Specifically, we detail how the physical and biogeochem-
ical mechanisms are converted into the discretized generic equation (1.1) by explicitly
defining the state function $F(x, p)$. In practice, we use the AIBECS package [SM20]
to download the ocean circulation and generate the state function, F, the mismatch
function f, and their derivatives.

SM1.1. The ocean circulation. We use the control (CTL) circulation output
from the Ocean Circulation Inverse Model (OCIM1) of DeVries [SM3]. The OCIM
optimizes a steady-state circulation by assimilating oceanographic tracer data (see
[SM5]), which include potential temperature, salinity, radiocarbon, and CFC-11. The
resulting circulation thus effectively represents an estimate of the mean state of the
global ocean circulation and is formulated as a sparse matrix, denoted here by T_{DIP},
to facilitate rapid simulation of biogeochemical tracers. The circulation is embedded
in an Arakawa B-grid with a $2^\circ \times 2^\circ$ resolution and 24 depth levels with thicknesses
increasing from ~ 25 m at the surface to ~ 500 m for the deepest layer. (This amounts
to 200,160 ocean grid cells.) In practice, we use the AIBECS package [SM20] to
download the OCIM matrix.

With the state of the system represented by the column vector
$x = \begin{bmatrix} x_{\text{DIP}} \\ x_{\text{POP}} \end{bmatrix}$,
the OCIM1 transport matrix is applied to the DIP vector only, x_{DIP}. That is, the
matrix–vector product, $T_{\text{DIP}} x_{\text{DIP}}$, yields the flux divergence of DIP due to the ocean
circulation. In other words, $T_{\text{DIP}} x_{\text{DIP}}$ is the discrete equivalent of $\nabla \cdot \left[u - K \nabla \right] x_{\text{DIP}}$ in (3.1).

SM1.2. The sinking particles. We now describe how T_{POP}, a sparse matrix
representing the discrete equivalent of $\nabla \cdot w$ in (3.1), is created. At the bottom of
each model box, the sinking velocity is hence defined by

(SM1.1) \[w \equiv w' z_{\text{bot}} + w_0, \]

where z_{bot} is a vector of the depths of the bottom of each grid box and w is the
vector of the magnitudes of the downward particulate velocity. Note that the w
symbol defined in (SM1.1) is different from the w symbol used for (3.1), which was
the 3D velocity vector. The flux-divergence operator, T_{POP}, is defined such that
$T_{\text{POP}} x_{\text{POP}}$ is the divergence of the sinking POP flux. The flux of sinking POP is
approximated by $w x_{\text{POP}}$ at the bottom of each model box.

∗Submitted to the the SIAM Journal of Scientific Computing for review on 2019-07-09.
Funding: This work was funded by the US Department of Energy grant DE-SC0016539 and
the National Science Foundation grant 1658380.
†Department of Earth System Science, University of California, Irvine, CA, United States
(pasquieb@uci.edu, fprimeau@uci.edu).

SM1
The flux divergence is then approximated by the difference between the flux at the top and at the bottom of each box. Specifically, the sinking transport operator T_{POP} is defined by

$$T_{\text{POP}} \equiv \Delta Z^{-1}(U_{x_{\text{POP}}} - I_{x_{\text{POP}}})W,$$

where ΔZ is a diagonal matrix with diagonal Δz, which is the vector of the depth thickness of each box, $I_{x_{\text{POP}}}$ is the identity matrix, and W is the diagonal matrix with diagonal w. The matrix $U_{x_{\text{POP}}}$ consists of 1’s on a superdiagonal similar and is thus upper triangular. It is defined similarly to a shift matrix, such that it shifts indices to the boxes above, so that $(U_{x_{\text{POP}}} - I_{x_{\text{POP}}})W_{x_{\text{POP}}}$ effectively yields the vector of the differences between the flux of POP at the top and at the bottom of each grid box. Thus, T_{POP}, is a function of the parameters w' and w_0 only.

SM1.3. The state function. The rate of change of the system is defined by

$$F(x, p) \equiv \left[-T_{\text{DIP}} x_{\text{DIP}} - U + R + C\right] - T_{\text{POP}} x_{\text{POP}} + U - R,$$

where the column vectors U and R are the uptake and remineralization rates, respectively, converting DIP to POP and back (U and R in (3.1)).

The discrete equivalent of the uptake, remineralization, and geological restoring rates, as defined in (3.2), can be defined compactly by

$$\begin{align*}
U &\equiv \frac{x_{\text{DIP}}^+}{\tau} x_{\text{DIP}} + k (z \leq z_0) \\
R &\equiv k x_{\text{POP}}^+ - x_{\text{DIP}} \\
C &\equiv \frac{(x_{\text{geo}}^+) - x_{\text{DIP}}}{\tau_{\text{geo}}}
\end{align*}$$

where $x_{\text{DIP}}^+ = x_{\text{DIP}}$ if $x_{\text{DIP}} \geq 0$ and $x_{\text{DIP}}^+ = 0$ otherwise, ensuring that uptake only occurs for positive concentrations. (This is to avoid problems due to the hyperbolic term in the uptake when numerical noise generates negative concentrations.) Similarly, the $(z \leq z_0)$ term ensures that uptake only occurs in the euphotic zone. (z is the vector of box depths, oriented positively downwards, and $z_0 \equiv 75$ m is the approximate depth of the bottom of the euphotic layer in the OCIM1 grid.)

Note that we used two shortcuts to simplify notation in (SM1.4) that we use throughout this section: (i) Boolean expressions are assumed to convert automatically to the real-valued 0 or 1, and (ii) binary vector operations are assumed to be elementwise. Thus, for example, in (SM1.4), each entry of x_{DIP}^+ is divided by the corresponding entry in $(x_{\text{DIP}}^+ + k)$, and $(z \geq z_0)$ is a vector of 0’s and 1’s with its entries multiplied by the corresponding entries of $x_{\text{DIP}}^+/(x_{\text{DIP}}^+ + k)$.

SM2. Derivatives with respect to the state. The scope of the F-1 algorithm may appear restricted by the fact that it requires the user to supply the Jacobian function, $\nabla_{x} F$. However, the Jacobian function, $\nabla_{x} F$, which is required for Newton-like inner solvers, may be easy to derive analytically. Additionally, because many discretizations for PDEs use local low-order finite difference schemes that produce sparse Jacobian matrices, $\nabla_{x} F(x, p)$ is likely sparse, so that it can be computed numerically in only a few dual passes using a graph-coloring algorithm (see, e.g., [SM10]). Furthermore, it is likely that the Jacobian of the nonlinear part of F is
even sparser, e.g., diagonal or made of blocks that are diagonal, allowing for it to be
computed in even less dual passes.

For instance, in the context of the global marine phosphorus cycling model (sec-
tion SM1), the Jacobian of the state function F defined by (SM1.3) can be evaluated
in just two dual evaluations. Consider the partition of $F(x, p)$ into the sum of a linear
part (with respect to x), denoted by $-T(p)x$, where

\[
T(p) = \begin{bmatrix}
T_{\text{DIP}} & 0 \\
0 & T_{\text{POP}}
\end{bmatrix}
\]

is a large block-diagonal sparse matrix, and a local part, $G(x, p)$, which consists of
the uptake, U, remineralization, R, and geological restoring, C (see section SM1).
The Jacobian of the local part, $\nabla_x G(x, p)$, is then made of blocks that are diagonal,
i.e.,

\[
(\text{SM2.1}) \quad \nabla_x G(x, p) = \begin{bmatrix}
\nabla_{\text{DIP}} C - \nabla_{\text{DIP}} U & \nabla_{\text{POP}} R \\
\n\nabla_{\text{DIP}} U & -\nabla_{\text{POP}} R
\end{bmatrix}
\]

where $\nabla_{\text{DIP}} C$, $\nabla_{\text{DIP}} U$, and $\nabla_{\text{POP}} R$ are the derivatives of C, U, and R with respect
to x_{DIP} or x_{POP}, as indicated, and are diagonal matrices because C, U, and R
are local rates. Because these are diagonals, $\nabla_x G(x, p)$ can be computed in two
dual evaluations, one where ε is added to each entry of x_{DIP}, and one where ε
is added to each entry of x_{POP}. The full Jacobian, $\nabla_x F(x, p)$ is then simply given by
$-T(p) + \nabla_x G(x, p)$. (This is for example implemented under the hood in the AIBECS
package to generate $\nabla_x F$ automatically from T_{DIP}, T_{POP}, and the local sources and
sinks [SM20].)

A similar potential restriction to the scope of the F-1 algorithm is that it requires
the user to supply $\nabla_x f$. However, an analytical formula for $\nabla_x f(x, p)$ is straightfor-
wardly available if $f(x, p)$ is expressed as the sum of the quadratics, as is the case
for the objective function of our phosphorus-cycling model. That is, the state and
parameter parts of $f(x, p)$ are usually separable, so that $f(x, p) = f(x) + f(p)$, and
the state part, $f(x)$, usually takes the generic form $f(x) = \frac{1}{2} \delta x^T \Omega \delta x$, where the
precision matrix Ω is diagonal, so that

\[
(\text{SM2.3}) \quad \nabla_x f(x, p) = \delta x^T \Omega
\]

can be readily used as the analytical formula supplied to the F-1 algorithm. (Here
we have abused notation to distinguish the state and parameter parts of $f(x, p)$
depending on its arguments, similar to the multiple-dispatch paradigm of the Julia
language.) Hence, we argue that in many scientific applications, the F-1 algorithm
can be used as a fully automatic differentiation tool with little additional effort, e.g.,
compared to the HYPER or FD2 algorithms.

SM3. Comment on the computation time partition. We note that in Fig-
ure 4, the time spent by the inner solver is attributed to time spent on the gradient.
This is because the Newton-Trust-Region algorithm we use for the optimization com-
putes the gradient first, then the Hessian, and finally the objective, in that specific
order. Thus, the inner solver is always invoked by the gradient first, making $s(p)$ (and
the factors of A in the case of the F-1 algorithm) available for the subsequent Hessian
and objective computations. The objective function is computed last because it is not
needed in Newton’s method for minimization and is merely evaluated for recording
the progress of the optimization. Hence, the time attributed to the objective func-
tion, $f(p)$, is merely the time of a single evaluation of $f(s, p)$, which is negligibly

This manuscript is for review purposes only.
SM4. Extending real numbers for differentiation.

SM4.1. Complex numbers. Since its discovery [12], and despite its elegance and efficiency, it took nearly 30 years before the complex-step algorithm for differentiation was described in the literature, by Squire and Trapp [24]. More recently, Cleve Moler wrote a simple blog post [16] describing the technique on the MathWorks website in 2013, and Martins et al. [13] wrote an article dedicated to it. Consider a simple generic real-valued function g, which depends on a real-valued scalar variable. The Taylor expansion of g at x in the ih direction, where i is the imaginary unit and h is a small real-valued scalar, is given by

$$g(x + ih) = g(x) + ih\nabla g(x) + \frac{(ih)^2}{2} \nabla^2 g(x) + \ldots$$

In practice, if h is small enough, floating-point arithmetic would ensure that only the first two terms remain (specifically, if $g(x)$ is indistinguishable from $g(x) - h^2 \nabla^2 g(x)/2$ for the finite-precision machine, assuming the higher-order terms are even smaller).

This way, one can approximate the first derivatives to numerical precision, by taking the imaginary part of $g(x + ih)$, i.e.,

$$\nabla g(x) \approx \frac{\Im\{g(x + ih)\}}{h},$$

where $\Im(x)$ is the imaginary part of x. In particular, because there is no difference involved and because the relative sizes of the real and imaginary parts do not interfere within the complex-number type, there is no need to worry about truncation error, so that one can take an arbitrarily small h (e.g., $h = 10^{-100}$).

The complex-step algorithm is straightforward to implement in many scientific computing languages, including Julia, MATLAB, Octave, Scilab, Python, IDL, and Fortran, which all have a built-in complex-number type. And we note that Martins et al. [13] suggested that complex-step differentiation is equivalent to algorithmic differentiation (also known as automatic differentiation).

SM4.2. Dual Numbers. Dual numbers were first introduced by Clifford [2], with the “dual” term being coined by Study [25]. A dual unit number, denoted ε, is introduced, and defined by the simple rule that $\varepsilon^2 = 0$ (instead of $i^2 = -1$ for complex numbers) and is used here as an efficient numerical tool to compute first derivatives (see, e.g., [17]).

Using dual numbers to evaluate a derivative is cleaner and simpler than the complex-step differentiation of (SM4.2), as

$$\nabla g(x) = \mathcal{D}\{g(x + \varepsilon)\},$$

where $\mathcal{D}(x)$ is the dual part (the ε part) of x. The advantage of using dual numbers for our approach lies in the fact that Taylor expansions of the first order in the non-real direction are exact, i.e.,

$$g(x + \varepsilon) = g(x) + \varepsilon\nabla g(x) + \frac{\varepsilon^2}{2} \nabla^2 g(x) + \ldots$$
is a strict equality. (A property that is not true for Taylor expansions in the complex
plane.) In other words, dual numbers provides a robust mathematical tool to represent
infinitesimal quantities with ε.

Another advantage compared to the complex step algorithm is that there is no
need to introduce a small step size, h, although we note that the behavior of dual
numbers can be reproduced using complex numbers by choosing h sufficiently small
for the complex Taylor series to automatically truncate terms of order greater than
1. However, we note that the dual-step algorithm offers a cleaner, more modern
numerical differentiation tool that can be applied to a broader set of functions (e.g.,
functions that internally invoke complex numbers).

We note the dual numbers have a formal algebraic interpretation, whereby they
extend the real numbers to an algebra over the reals of dimension 2, where ε is the
image of the polynomial $X \mapsto X$ in the quotient of the univariate polynomial ring with
real-valued coefficients, $\mathbb{R}[X]$, over the ideal generated by the $X \mapsto X^2$ polynomial. In
other words, the dual numbers can be identified with $\mathbb{R}[X]/(X^2)$ just like the complex
numbers can be identified with $\mathbb{R}[X]/(X^2 + 1)$.

SM4.3. Hyper Dual Numbers. Hyper dual numbers are an extension of dual
numbers used to evaluate second derivatives (e.g., [SM8, SM6, SM7, SM17]). The
nonreal components are defined by ε_1 and ε_2 such that $\varepsilon_1^2 = \varepsilon_2^2 = 0$ and $\varepsilon_1 \varepsilon_2 \neq 0$.
Consider $g(x, y)$, a real-valued function of two variables. Its Taylor expansion in the
($\varepsilon_1, \varepsilon_2$) direction is given by

$$g(x + \varepsilon_1, y + \varepsilon_2) = g(x, y) + \varepsilon_1 \nabla_x g(x, y) + \varepsilon_2 \nabla_y g(x, y) + \varepsilon_1 \varepsilon_2 \nabla_{xy} g(x, y),$$

and its Taylor expansion in the ($\varepsilon_1, 0$) direction is given by

$$g(x + \varepsilon_1, y + \varepsilon_2) = g(x, y) + \varepsilon_1 \nabla_x g(x, y) + \varepsilon_2 \nabla_y g(x, y) + \varepsilon_1 \varepsilon_2 \nabla_{xx} g(x, y),$$

Hence, the terms of the Hessian of g can be evaluated via

$$\nabla^2 g(x, y) = \mathcal{H} \begin{pmatrix} g(x + \varepsilon_1 + \varepsilon_2, y) & g(x + \varepsilon_1, y + \varepsilon_2) \\ g(x + \varepsilon_2, y + \varepsilon_1) & g(x, y + \varepsilon_1 + \varepsilon_2) \end{pmatrix},$$

where $\mathcal{H}(x)$ is the hyperdual part of x (the $\varepsilon_1 \varepsilon_2$ coefficient). Note that hyperdual
numbers can also be used to evaluate the terms of the gradient just like dual numbers,
e.g., via

$$\nabla g(x, y) = \mathcal{H}_1 \begin{pmatrix} g(x + \varepsilon_1, y) \\ g(x, y + \varepsilon_1) \end{pmatrix},$$

where $\mathcal{H}_1(x)$ is the "first hyperdual" part of x (the ε_1 part). Generalizing these
formulas to the case of functions of more than two variables is straightforward.

We note that the hyperdual numbers also have an algebraic interpretation. They
form an algebra over the reals of dimension 4, as the quotient of the multivariate
polynomial ring with real-valued coefficients, $\mathbb{R}[X, Y]$, over the ideal generated by
the $(X, Y) \mapsto X^2$ and $(X, Y) \mapsto Y^2$ polynomials. In that quotient, ε_1 and ε_2 are
the images of the polynomials $(X, Y) \mapsto X$ and $(X, Y) \mapsto Y$. In other words, the
hyperdual numbers can be identified with $\mathbb{R}[X, Y]/(X^2, Y^2)$.

SM5. Solving dual and hyperdual linear systems. As noted in section 2
and section 3, the CSD, DUAL, and HYPER algorithms must invoke the inner solver.
with complex-valued, dual-valued, and hyperdual-valued state and parameters. However, assuming the inner solver invokes Newton-type steps, it must solve complex, dual, or hyperdual linear systems, respectively. This Appendix describes an efficient strategy for solving dual-valued and hyperdual-valued linear systems, and illustrates its execution in Julia using packages that were developed specifically for this study: DualMatrixTools [SM18] and HyperDualMatrixTools [SM19].

At first, it would appear that in order to solve the linear systems involving a dual-valued matrix of the type \(M = A + \varepsilon B \), the factorization of the dual-valued matrix \(M \) is necessary. However, doing so is not straightforward and is likely not efficient: (i) there is no guarantee that the underlying package that performs factorizations can handle dual-valued sparse matrices (e.g., UMFPACK can only handle real and complex numbers), and (ii) performing dual-valued factorizations is computationally more expensive than performing real-valued factorizations. We note that this is also the case for solving complex-valued linear systems, and that a similar technique — avoiding complex-valued factorizations — can be used for solving complex-valued linear systems, as long as the imaginary part is small (as is the case for the complex-step differentiation method).

Instead, a better strategy is to only factorize \(A \), the real part of \(M \). Because we are using dual numbers, the Taylor expansion of the inverse of \(A + \varepsilon B \) is given by

\[
(A + \varepsilon B)^{-1} = (I_x - \varepsilon A^{-1} B)A^{-1},
\]

where \(I_x \) is the identity matrix (with its size, \(n \times n \), indicated by the \(x \) superscript).

Equation (SM5.1) allows to solve dual-valued linear systems using only the factors of the real part, \(A \), via two real-valued forward and back substitutions.

For the DUAL algorithm to work in our implementation, i.e., for the DUAL algorithm to be able to invoke the inner solver with dual-valued state and parameters, we developed DualMatrixTools [SM18], to perform the shortcut provided by (SM5.1) under the hood. That is, it allows to factorize the real part only of \(M \) (using the factorize function) and to solve the corresponding dual-valued linear system (using the backslash function, \(\backslash \)) via (SM5.1) in a single line of code for each of those two operations. We note that this package can be used in other applications and, again, emphasize its ease of use.

In the case of the HYPER algorithms, we provide a hyperdual equivalent of (SM5.1), which shows that only the inverse of \(A \) is required for computing the inverse of a hyperdual-valued matrix \(M = A + \varepsilon_1 B + \varepsilon_2 C + \varepsilon_1\varepsilon_2 D \). In fact, the inverse of \(M \) is given by

\[
(M^{-1}) = [I_x - \varepsilon_1 A^{-1} B - \varepsilon_2 A^{-1} C - \varepsilon_1\varepsilon_2 A^{-1} (D - CA^{-1} B - BA^{-1} C)]A^{-1}.
\]

Just like for dual-valued linear systems, we developed a Julia package, HyperDualMatrixTools [SM19], to solve hyperdual-valued systems under the hood. In a single line of code, one can factorize the real part of \(M \) using factorize or solve a hyperdual-valued linear system using backslash (\(\backslash \)). This package has been optimized to compute hyperdual-valued forward and back substitutions in just four real-valued forward and back substitutions, as can be derived from (SM5.2).

SM6. The pitfalls of black-box approaches. In this appendix, we describe what happens when invoking the solver with complex, dual or hyperdual parameters as a black box. Here we show that not only is this naive approach slower, it directly introduces numerical errors. That is, we describe what happens when using the
SUPPLEMENTARY MATERIALS: THE F-1 ALGORITHM

DUAL, HYPER, and CSD algorithms. We emphasize that when using an iterative algorithm that was written for real-valued numbers, it is imperative to set additional tolerances on the non-real part(s) of the iterates. Setting these tolerances, which control when the loop terminates, can be complicated. But before diving into the details, we first recall Newton’s method in the real case.

Starting from an initial estimate \(x_0 \), Newton’s method is based on the recursion relation

\[
x_{l+1} = x_l - \nabla_x F(x_l, p)^{-1} F(x_l, p),
\]

where \(\nabla_x F(x_l, p) \) is the Jacobian evaluated at the \(l \)th iterate of the state, \(x_l \). If all goes well, the iterates converge to the steady state, i.e., \(\lim_{l \to \infty} x_l = s(p) \).

In practice, when invoked for real-valued parameters, the solver we use applies Shamanskii’s method, which improves on Newton’s method by not updating the Jacobian at each iterate, increasing computational performance. Additionally, the solver we use also performs an Armijo line search if the Shamanskii step overshoots the solution (the solver we use was adapted from the nsol1d solver from Kelley [SM11]). That is, the Armijo line search looks for the minimum of the norm of \(F(x, p) \) along the Shamanskii-step direction via a quadratic approximation. However, for the sake of clarity, here we only detail the classical Newton’s method. (The solver we actually use is available in the AIBECS package [SM20].)

We now explore the convergence of the Newton’s method when the parameters are dual-valued (i.e., what happens when using the DUAL algorithm). We thus replace \(p \) with \(p + \varepsilon e_j \). Although we start from the real-valued \(x_0 = s(p) \), the iterates \(x_l \) include a potentially non-trivial dual part for \(l > 0 \), since the dual part of \(p + \varepsilon e_j \) will spread to \(x_l \) at each Newton iteration. We thus partition \(x_l \) into its real and dual parts, such that

\[
x_l = a_l + \varepsilon b_l,
\]

where we omit the \(p + \varepsilon e_j \) argument for brevity.

The dual-valued \(F(a_l + \varepsilon b_l, p + \varepsilon e_j) \) can be expressed via the Taylor expansion of \(F \) at \((a_l, p) \) in the \((\varepsilon b_l, \varepsilon e_j) \) direction, which gives

\[
F(a_l + \varepsilon b_l, p + \varepsilon e_j) = F(a_l, p) + \varepsilon A_l b_j + \varepsilon \nabla p F(a_l, p) e_j,
\]

where \(A_l = \nabla_x F(a_l, p) \) is a real-valued Jacobian matrix. Similarly, the dual-valued Jacobian matrix \(\nabla_x F(a_l + \varepsilon b_l, p + \varepsilon e_j) \) can also be expressed by a dual Taylor expansion. However, we need not detail all its terms, and instead simply denote its real part by \(A_l \) and its dual part by the unspecified matrix \(B_l \), respectively, so that

\[
\nabla_x F(a_l + \varepsilon b_l, p + \varepsilon e_j) = A_l + \varepsilon B_l.
\]

Note that \(A_l = \nabla_x F(a_l, p) \) is also the real part of the dual-valued Jacobian.

Evaluating the iterations of (SM6.1) with dual-valued parameters, it appears that the real part has exactly the same form as the original real-valued iterations, except with \(a_l \) symbols in place of \(x_l \) symbols. Assuming we start with \(a_0 = s(p) \) means \(a_l = s(p) \) throughout. This is expected because the dual-valued call to the solver will not improve the real-valued solution.

The non-real part however contains additional terms, with

\[
b_{l+1} = b_l - A_l^{-1} A_l b_l - A_l^{-1} \nabla p F(a_l, p) e_j + A_l^{-1} B_l A_l^{-1} F(a_l, p).
\]
where we have used the analytical formula for the inverse of a dual-valued matrix,

\[(\text{SM5.1})\] Note the first and second terms, which should cancel each other. These

were intentionally left for the reader to appreciate how a black-box approach will ex-

ect unnecessary computations, both slowing down the computation and potentially

introducing additional numerical errors (\(b_i\) would seldom be strictly exactly equal to

\(A_i^{-1}A_i b_i\) without an infinite precision computer.) Additionally, the last term should

vanish because \(a_i = s(p)\) (by definition of \(s(p)\)). However, this term will not vanish

exactly with finite precision machines, so that the black-box approach will compute

this term and potentially introduce errors while doing so.

In our implementation, the tolerance for the dual part is decided by the ratio of

the norm of the dual-part of the Newton step to the norm of the dual part. Specifically,

the solver loop terminates if \(\|b_i - b_{i-1}\| / \|b_{i-1}\|\) is smaller than 10^{-7}. Starting from

the solution \(s(p)\), the dual-type black-box approaches will thus invoke the inner solver

with one iteration to converge to the dual-valued solution, and another iteration to

test that the dual-part has converged, thus requiring two iterations overall.

We note that in this specific context, one could get away with forgetting to set

a tolerance for the dual part only because the inner solver effectively converges in a

single iteration. However, this is not the case for all iterative algorithms taken as a

black box, as illustrated by the \(\sim\)100-iterations lag of the non-real part described by

Martins et al. [SM13]. Therefore we consider that omitting these tolerances is not

a reasonable approach. Conversely, we also note that setting too tight a tolerance

for the non-real part could potentially result in a large (or even infinite) number

of iterations for the solver loop to terminate, when in fact it oscillates over a small

neighborhood of the solution until a small enough dual-valued step is randomly taken.

We emphasize that all the arguments brought up in this appendix so far also apply to

the complex-step algorithm. That is, the exact same phenomenon occurs when using

the CSD algorithm. In comparison, the F-1 algorithm completely alleviates the need

to set a tolerance for the dual part of the inner solver, since it does not invoke it.

We now show that, in our context, the inner solver invoked with hyperdual-

valued parameters converges in exactly two iterations (i.e., when using the HYPER

algorithm). We give a brief outline of how the derivation goes, but leave its details out

for brevity. Again, we consider the hyperdual parameters defined by \(p_{jk} = p + \varepsilon_1 e_j +

\varepsilon_2 e_k\). Starting from the real-valued solution, \(s(p)\), just like in the dual case, the real

part of the hyperdual state remains constant, equal to \(s(p)\), throughout the Newton

iterations. The first iteration permeates hyperdual-values from the parameters into

the first state iterate, \(x_1\). In fact, the \(\varepsilon_1\) and \(\varepsilon_2\) parts of the state converge in that first

iteration, so that the \(\varepsilon_1\) and \(\varepsilon_2\) parts of \(s(p_{jk})\) are the \(\varepsilon_1\) and \(\varepsilon_2\) parts of \(x_1\). However,

a second iteration is required for the \(\varepsilon_1\varepsilon_2\) part to converge, because it requires that

the previous state (in this case \(x_1\)) contains the converged \(\varepsilon_1\) and \(\varepsilon_2\) parts. Thus,

convergence of all the non-real parts requires exactly two iterations. This is because,

unlike for the dual case, some of the non-real terms that include non-real parts of the

state (the terms including \(b_i\) in (SM6.5)) do not cancel out in the hyperdual case.

This is also because the \(\varepsilon_1\varepsilon_2\) part of \(x_{i+1}\) only depends on the real, \(\varepsilon_1\), and \(\varepsilon_1\) parts of

\(x_i\). Just like in the dual case, we emphasize that the inner solver must check that the

non-real parts have converged, so that the HYPER algorithm requires one additional

Newton step to terminate, bringing the total number of iterations to three.

Code and data availability. The state function, \(F\), and the mismatch function,
\(f\), as well as their derivatives, were automatically generated using the AIBECS pack-
geage [SM20] or manually generated in the FastBGCParameterOptimization GitHub

This manuscript is for review purposes only.
The ocean circulation was taken from the output of the control (CTL) run of the Ocean Circulation Inverse Model (OCIM1 [SM4]) and is available online in a MAT file (the MATLAB data format) on the website of Tim DeVries. The OCIM1 grid and transport matrix have been converted to Julia to be downloaded and used by the AIBECs package [SM20]. The mismatch of the state used the objectively analyzed mean field of the phosphate concentration from the World Ocean Atlas 2018 (WOA18 [SM9]). The WOA18 data was downloaded and fitted to the OCIM grid using the WorldOceanAtlasTools package [SM22]. The F-1 algorithm is implemented in the F1Method package [SM21]. The CSD, FD1, DUAL, HYPER, and FD2 algorithms, the figures, and the underlying data that are shown in this study are contained in the FastBGCParameterOptimization GitHub repository. Dual- and hyperdual-valued factorizations and forward and back substitutions of sparse linear systems were performed using the DualMatrixTools [SM18] and HyperDualMatrixTools [SM19] packages, respectively. The optimizations were performed using the Optim package [SM14, SM15]. The concrete types defining the steady-state problems and the steady-state solutions were built upon the DiffEqBase package [SM23]. Benchmarks were performed with the BenchmarkTools and TimerOutputs packages. The diagram was created using the \LaTeX{} package. Result figures were created using the PyPlot package. All the computations were performed using the Julia language [SM1].

REFERENCES

