
1 

 

Perspective on Identifying and Characterizing the Processes Controlling Iron Speciation 

and Residence Time at the Atmosphere-Ocean Interface 
 

Nicholas Meskhidze1*, Christoph Völker2, Hind A. Al-Abadleh3, Katherine Barbeau4, Matthieu 

Bressac5, Clifton Buck6, Randelle M. Bundy7, Peter Croot8, Yan Feng9, Akinori Ito10, Anne M. 

Johansen11, William M. Landing12, Jingqiu Mao13, Stelios Myriokefalitakis14, Daniel Ohnemus6, 

Benoît Pasquier15, Ying Ye2 

 
1 North Carolina State University, Raleigh, NC, 27695, USA 
2 Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 

Bremerhaven, Germany 
3 Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada 
4 Geosciences Research Division, Scripps Institution of Oceanography, La jolla, CA, 92093, USA 
5 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 

Australia 
6 Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, 31411, USA 
7 School of Oceanography, University of Washington, Seattle, WA, 98195, USA 
8 School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, 

H91 TK33, Ireland. 
9 Environmental Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA 
10 Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, Kanagawa, 236-0001, Japan. 

11 Department of Chemistry, Central Washington University, Ellensburg, WA 98926, USA 
12 Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, 

FL, 32306, USA 
13 Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK 

99775, USA 
14 Institute for Environmental Research and Sustainable Development (IERSD), National 

Observatory of Athens, GR-15236 Palea Penteli, Greece 
15 Department of Earth System Science, University of California, Irvine, CA, 92697, USA 

 

Keywords: Atmosphere-ocean interaction, iron biogeochemistry, bioaccessible and bioavailable 

iron, atmospheric and oceanic models 

 

 

*Correspondence to: N. Meskhidze, Marine Earth and Atmospheric Sciences, North Carolina State 

University, Raleigh, NC, USA, E-mail: nmeskhidze@ncsu.edu 

  

© 2019 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0304420319302117
Manuscript_5a20bb4537861533169d6d7dff052f26

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0304420319302117


2 

 

ABSTRACT: It is well recognized that the atmospheric deposition of iron (Fe) affects ocean 

productivity, atmospheric CO2 uptake, ecosystem diversity, and overall climate. Despite 

significant advances in measurement techniques and modeling efforts, discrepancies persist 

between observations and models that hinder accurate predictions of processes and their global 

effects. Here, we provide an assessment report on where the current state of knowledge is and 

where future research emphasis would have the highest impact in furthering the field of Fe 

atmosphere-ocean biogeochemical cycle. These results were determined through consensus 

reached by diverse researchers from the oceanographic and atmospheric science communities 

with backgrounds in laboratory and in situ measurements, modeling, and remote sensing. We 

discuss i) novel measurement methodologies and instrumentation that allow detection and 

speciation of different forms and oxidation states of Fe in deliquesced mineral aerosol, 

cloud/rainwater, and seawater; ii) oceanic models that treat Fe cycling with several external 

sources and sinks, dissolved, colloidal, particulate, inorganic, and organic ligand-complexed 

forms of Fe, as well as Fe in detritus and phytoplankton; and iii) atmospheric models that 

consider natural and anthropogenic sources of Fe, mobilization of Fe in mineral aerosols due to 

the dissolution of Fe-oxides and Fe-substituted aluminosilicates through proton-promoted, 

organic ligand-promoted, and photo-reductive mechanisms. In addition, the study identifies 

existing challenges and disconnects (both fundamental and methodological) such as i) 

inconsistencies in Fe nomenclature and the definition of bioavailable Fe between oceanic and 

atmospheric disciplines, and ii) the lack of characterization of the processes controlling Fe 

speciation and residence time at the atmosphere-ocean interface. Such challenges are 

undoubtedly caused by extremely low concentrations, short lifetime, and the myriad of physical, 

(photo)chemical, and biological processes affecting global biogeochemical cycling of Fe. 

However, we also argue that the historical division (separate treatment of Fe biogeochemistry in 

oceanic and atmospheric disciplines) and the classical funding structures (that often create 

obstacles for transdisciplinary collaboration) are also hampering the advancement of knowledge 

in the field. Finally, the study provides some specific ideas and guidelines for laboratory studies, 

field measurements, and modeling research required for improved characterization of global 

biogeochemical cycling of Fe in relationship with other trace elements and essential nutrients. 

The report is intended to aid scientists in their work related to Fe biogeochemistry as well as 

program managers at the relevant funding agencies.  
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Highlights  

Unified nomenclature of the Fe-related terminology is proposed for atmospheric and oceanic 

communities 

 

A strategic science prioritization matrix is offered for conducting and facilitating new research 

 

Mechanistic treatments are needed for aerosol Fe interaction with atmospheric and oceanic DOM 
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1. Introduction 

Earth System Models (ESMs) now pay particular attention to interactions between the 

atmosphere and the ocean ecosystems, in response to the highlighted need for improved 

representation of climate forcing and feedbacks (IPCC, 2013). These interactions have 

implications for trace gas exchange, the bidirectional fluxes of particulates, and the overall 

global energy budget. The synthesis of in situ-observational and iron fertilization studies (e.g., 

Boyd et al., 2007) has shown that, in addition to nitrogen and phosphorus, iron (Fe) is one of the 

major limiting nutrients that exerts a direct control on ocean productivity and carbon export not 

only in the High Nutrient, Low Chlorophyll (HNLC) regions but in many other regions globally 

(Moore et al., 2013). This finding is also reproduced by global ocean biogeochemical models 

(Fung et al., 2000; Moore and Doney, 2007). Atmospheric supply of Fe (including mineral dust, 

volcanic, biomass burning, and anthropogenic aerosols), is considered to be an important 

external Fe source for the open ocean (Duce and Tindale, 1991; Jickells et al., 2005; Tagliabue et 

al., 2017). Studies have shown, that in addition to the direct forcing of climate through its impact 

on ocean productivity and atmospheric CO2 uptake, the atmospheric deposition of Fe could 

affect ocean ecosystem diversity and, as a result, climate feedbacks (Moore et al., 2004; 

Krishnamurthy et al., 2010). 

All known forms of life require Fe in several physiological functions: Iron is needed in 

electron transport around photosystems I and II (Raven et al., 1999), in the enzymes nitrogenase 

and nitrate reductase, which catalyze redox transformations of nitrogen (e.g., Raven, 1988), and 

in the cytochrome P450 superfamily of proteins, which catalyzes a large number of different 

reactions in organisms as diverse as archaea and animals (Danielson, 2002). However, 

acquisition of Fe by aquatic microorganisms is hard, as the oxidizing environment of the oceans 
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limits concentrations of aqueous inorganic Fe to sub-picomolar levels, orders of magnitude less 

than what is required to sustain oceanic biomass and primary production (Liu and Millero, 2002; 

Johnson et al., 1997). The solubility of inorganic iron in oxygenated seawater solutions can be 

increased in the presence of organic ligands or chelators. It is estimated that more than 99% of 

bioavailable Fe (i.e., Fe that can be taken up by the biota) is chelated by organic ligands (Rue 

and Bruland, 1995; Gledhill and Buck, 2012). As the residence time of ligand-complexed Fe is 

long (months to years, Hayes et al., 2018), oceans can maintain levels of bioavailable Fe well 

above the concentration limits of aqueous inorganic forms. 

Characterization of the ocean’s biogeochemical cycles requires quantitative knowledge of 

atmospheric sources of bioavailable Fe (Fung et al., 2000; Moore et al., 2004; Parekh et al., 

2004; Moore and Doney, 2007; Krishnamurthy et al., 2010; Okin et al., 2011; Sholkovitz et al., 

2012; Mahowald et al., 2018). Over the past decades, significant progress has been made in 

treating atmospheric sources of Fe in both atmospheric and oceanic global biogeochemical 

models. However, due to historical division, the global biogeochemical cycling of Fe has been 

treated separately in oceanic and atmospheric disciplines. This division has created several 

challenges that impede future progress. As a consequence, our ability to explore the impact of 

atmospheric nutrient deposition on phytoplankton abundance, productivity, and diversity is still 

limited, hampering confident projections of human-induced effects on the carbon cycle and 

climate 

In marine sciences, Fe species in seawater are operationally differentiated using a 

membrane filtration and can be in two ferrous (Fe(II)) and ferric (Fe(III)) oxidation state. 

Particulate Fe (PFe) is retained by a 0.2 μm filter and is assumed to gravitationally settle. 

Dissolved Fe (DFe) that passes through a 0.2 μm filter, soluble Fe (SFe) that passes through a 
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0.02 μm filter, and colloidal Fe (CFe) that passes through a 0.2 µm but is retained by a 0.02 µm 

filter, are all assumed to be neutrally buoyant and be transported along water currents and 

turbulent eddies. The DFe, CFe, and SFe forms of Fe are often assumed to be ligand-bound and 

considered to be bioavailable for phytoplankton in ocean biogeochemistry models (Raiswell and 

Canfield, 2012). Using such operational definitions, ocean models can then explicitly consider 

Fe(II)/Fe(III) cycling with external sources (mineral dust deposition, sediments, and 

hydrothermal), sinks (loss to the sediment, either as scavenged Fe on particles (Turekian, 1977), 

or as part of the buried organic matter), different forms of Fe (dissolved vs. colloidal or 

particulate, inorganic vs. organic), and Fe in detritus and phytoplankton (diazotrophs, large and 

small phytoplankton) (e.g., Parekh et al., 2005; Dunne et al., 2012; Aumont et al., 2015). Most 

ocean biogeochemical models use prescribed dust-deposition fluxes from atmospheric models as 

their atmospheric Fe input field, assuming both the weight fraction of Fe in mineral dust and the 

bioavailability of dust-deposited Fe to be constants. The concentration of Fe-binding ligands in 

seawater in models is often a fixed value as well. Oceanic biogeochemistry models to some 

extent reproduce the observed mean dissolved Fe concentrations in the surface ocean, albeit 

through the use of tuned scavenging rates to balance the large range (0.08 to 1.68 Tg Fe yr-1) in 

soluble Fe fluxes (Tagliabue et al., 2016). The sources and sinks of DFe, which are generally 

colocated, cannot be inferred solely from the geographical distribution of DFe (Pasquier and 

Holzer, 2017). Some recent attempts have been made to include more processes-oriented 

mechanisms for the solubility of dust-deposited Fe, e.g., spatially varying ligand concentrations, 

particulate material other than particulate organic carbon (Ye and Völker, 2017), and some of the 

first parameterizations of variable aerosol Fe solubility (Albani et al., 2016). The spatiotemporal 

variability of ligands (modeled as one ligand class with fixed binding strength) is either 
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described prognostically (Völker and Tagliabue, 2015) or related to apparent oxygen utilization 

and/or semi-labile dissolved organic carbon (DOC) (Misumi et al., 2013). Prognostic ligand 

models are more mechanistic but use highly uncertain assumptions on the biogenic sources of 

ligands and their breakdown processes. Recent studies have also begun to question the idea that 

nearly all DFe in surface oceans is ligand-complexed (Fitzsimmons et al., 2015a, 2015b) since 

nanoparticulates (defined here as inorganic forms of amorphous-crystalline Fe matrices < 0.2 µm 

in diameter), are small enough to fall into the dissolved size fraction. Bioavailability of Fe in 

seawater is controlled by numerous additional factors including processes mediated by the 

environment as well as controlled by microbes, such as light, temperature, excretion of 

siderophores and varying microbial uptake mechanisms (Hudson and Morel, 1990; Wilhelm and 

Trick, 1994; Maldonado and Price, 2001; Shaked and Lis, 2012; Morrissey et al., 2015). The 

matter is further complicated by the fact that SFe, CFe, and even PFe could be indirectly 

bioavailable to some groups (Chen and Wang, 2001; Hassler et al., 2011a, 2011b; Kanna and 

Nishioka, 2016). All these processes are hardly (if at all) resolved in ocean biogeochemical 

models. 

Since quantifying the bioavailability of Fe in aerosols is complex, atmospheric models 

have largely focused on soluble forms of Fe in deliquesced aerosol solution and cloud water. 

Atmospheric Fe biogeochemistry models now routinely consider mineralogy of wind-blown dust 

and Fe emanating from anthropogenic (combustion, biomass burning) aerosols. Atmospheric 

models also simulate the secondary formation of soluble Fe in the atmosphere due to the 

dissolution of Fe-oxides and Fe-substituted aluminosilicates through proton-promoted, organic 

ligand-promoted, and photo-reductive mechanisms (Myriokefalitakis et al., 2018). Fe in 

atmospheric aerosols may be present in different forms, i.e., crystalline and amorphous Fe-



9 

 

(oxy)hydroxides (e.g., hematite and goethite), Fe-substituted into aluminosilicate minerals, Fe-

rich nanoparticles, and Fe-organic complexes (Claquin et al., 1999; Nickovic et al., 2013; Shi et 

al., 2009; Cheize et al., 2012) and either in the Fe(III) or Fe(II) oxidation states (Fu et al., 2012; 

Raiswell and Canfield, 2012). Therefore, model-to-model and model-to-surface observation 

comparisons of soluble Fe remains hard. To overcome this difficulty, Myriokefalitakis et al. 

(2018) suggested using labile Fe (LFe) to represent the total soluble Fe in simulated atmospheric 

aerosol. Current atmospheric models are able to simulate the main features of atmospheric 

concentrations and deposition fluxes of labile Fe with an estimated global mean LFe fluxes to the 

ocean between 0.17 to 0.42 Tg Fe yr-1 (Myriokefalitakis et al., 2018), though large uncertainties 

remain in the absolute amount of LFe fluxes at different ocean regions (Myriokefalitakis et al., 

2018). The introduction of LFe simplifies Fe representation in atmospheric models and helps 

with model-to-model intercomparison. However, many challenges and disconnects (both 

fundamental and methodological) still remain. For example, models calculate LFe based on the 

chemical reactions with prescribed (commonly 0.45%) dissolved Fe fraction at the source region, 

which are routinely compared to measurements that use both 0.45 or 0.2 μm filter sizes for 

separation of soluble and insoluble fractions. Furthermore, aerosol-derived Fe in these sized 

particles (nanoparticulate colloids) can comprise amorphous and crystalline Fe-(oxyhydr)oxides, 

Fe-substituted alumino-silicates, and other Fe-rich nanoparticles (von der Heyden et al., 2012) 

that may not be bioavailable in seawater (e.g., Rich and Morel, 1990). 

Finally, neither atmospheric nor ocean biogeochemistry models consider the processes 

that influence physicochemical speciation of Fe at the atmosphere–ocean interface on the time 

scale of minutes to days and at the spatial resolution of tens of meters (in vertical resolution) to 

several kilometers (in horizontal). Considering that in several minutes after deposition, a very 
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small fraction (~ 10%) of atmospherically delivered inorganic soluble Fe can remain bioavailable 

in seawater devoid of organics (e.g., Santana-Casiano et al., 2005; Gilbert et al., 2007), the 

atmosphere-ocean interface remains one of the most uncertain components of Fe biogeochemical 

modeling. In general, the ability of aerosol LFe to influence the DFe budget of the oceans largely 

depends on two factors: i) the amount of LFe delivered through atmospheric pathways, and ii) 

the likelihood that LFe will become complexed by the Fe-binding ligands in the ocean. Although 

ligand concentrations in the ocean often exceed DFe (Boyd and Ellwood, 2010), only a small 

fraction of LFe entering the ocean may remain as ligand-complexed DFe. Aerosol LFe entering 

the ocean in Fe(II) or Fe(III) inorganic forms (Deguillaume et al., 2005 ; Bhattachan et al., 2016) 

will have a short lifetime unless they become quickly complexed by marine organics (Meskhidze 

et al., 2017). Within minutes Fe(II) is oxidized to Fe(III) in seawater (Rose and Waite, 2003). 

The half-life of Fe(II) can extend to an hour in cold (<5ºC) polar waters. Due to its low 

solubility, Fe(III) rapidly forms nano-particulate colloids and/or gets scavenged by oceanic 

particles. The half-life of 10-30 hours was calculated during an artificial addition of LFe to 

surface ocean (e.g., Gordon et al., 1998). It is true, that a high concentration of organic ligands 

can increase the retention of atmospheric LFe as DFe in the ocean (Gordon et al., 1998; Bowie et 

al., 2001). However, because depositions of large amounts of aerosol LFe are highly episodic in 

nature, with 30 to 80% of the annually averaged dust deposition occurring on ~5% of the days 

(Mahowald et al., 2009), Fe entering the surface ocean during one such event could easily 

consume all available ocean organic ligand, thereby reducing the lifetime of LFe (Meskhidze et 

al., 2017). 

Several reviews have covered the deposition of bioavailable iron from dust and the 

processes important in determining its effect from different angles (Baker and Croot, 2010; 
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Guieu et al., 2014; Baker et al., 2016; Mahowald et al., 2018; Kanakidou et al., 2018), and we 

refer to them where appropriate. In this article, we build on previous studies and attempt to 

highlight the most critical open questions and propose possible solutions regarding the aerosol Fe 

at the atmosphere–ocean interface. We also attempt to clear-up the nomenclature used by oceanic 

and atmospheric researchers and develop a list of priorities and rank them based on their 

feasibility and impact. 

2. Material and methods 

Seventeen scientists from seven countries convened in Telluride, CO on July 30-August 3, 2018 

to present their experimental and modeling studies related to atmospheric delivery of aerosol Fe 

and its contribution to the dissolved Fe inventory of the ocean. The workshop brought together 

established scientists and young researchers (PhD students and early career researchers who 

received their PhD within 8 years) to provide opportunities for professional interactions in a 

focused and productive forum. More than one-third of the invited researchers were female 

scientists. The individual presentations were followed by two breakout sessions and a summary 

session. Charges to working groups were laid out and distributed to all participants ahead of 

time. Each breakout session had a moderator/discussion leader and a rapporteur. The discussions 

in the breakout sessions were structured by the thematics and were designed to identify the most 

critical open questions concerning the sources, chemical forms, lifetime, and bioavailability of 

atmospherically delivered Fe. These discussions are summarized as individual chapters of the 

manuscript. The discussions in the summary session were focused by the topic and the subjects 

(contributed by the participants ahead of the workshop) were classified into four categories 

separated by (i) environmental domains (atmosphere vs. ocean) and (ii) study approach (model 

vs. observation): Atmospheric Model Representation, Ocean Model Representation, Atmospheric 



12 

 

Measurement Methodologies, Ocean Measurement Methodologies. For each topic, the following 

aspects were ranked through brainstorming: the current level of understanding, the impact that a 

full understanding would have in the field, and the resources that would be needed. Individual 

responses were collected, and ‘low’, ‘medium’, and ‘high’ level of understanding was assigned 

to each topic based on the consensus achieved by the majority of workshop participants. The 

order of listing of topics does not convey any indication of priority settings by the attendees. The 

developed Science Prioritization Matrix (see Sec. 12) that identifies the areas of investigation by 

the magnitude of their impact on proposed science is meant for program managers as well as 

researchers working in different fields. 

3. Fe nomenclature and the fraction of bioavailable Fe of ocean-deposited aerosols 

Comprehensive characterization of the effects of atmospheric deposition of Fe on surface 

ocean productivity requires knowledge of aerosol-Fe bioavailability. However, the concept of Fe 

bioavailability in seawater is extremely complex and poorly defined. The bioavailability of Fe in 

seawater varies between different bacterial and phytoplankton taxa or species within taxa, due to 

differences in the cellular surface area (Lis et al., 2015) and the existence of a wide range of Fe 

uptake mechanisms that are specialized for the transport of various chemical forms of Fe (Morel 

et al., 2008; Maldonado and Price, 2001; Morrissey et al., 2015; Wilhelm and Trick, 1994). 

These processes can also be influenced by other trace metals (such as for copper-dependent 

surface reductases, Semeniuk et al., 2016), solution pH, and carbonate ion concentration 

(McQuaid et al., 2018). In addition, Fe bioavailability is also linked to post-depositional 

processes in the ocean and can be influenced by the physicochemical state of the ocean, Fe 

speciation, light, and microbial interactions (Brévière and the SOLAS Scientific Steering 

Committee (eds.), 2016). Since the main objective for improved characterization of 
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biogeochemical cycling of Fe in the atmosphere is better quantification of its effects on ocean 

biological productivity and carbon uptake, we recommend adopting similar definitions that are 

based on operationally determined forms of Fe in the atmospheric and oceanic science 

communities, as summarized in Table 1. In terms of Fe contained in various particle sizes, as 

measured through filtration, PFe, CFe, DFe, and SFe, are the most appropriate definitions, while 

in terms of oxidation state, Fe(II)/Fe(III) would be applicable. These operational definitions of 

aerosol Fe could be applied to measurements of the deliquesced aerosol solution cloud/rainwater 

and seawater. However, to highlight the differences in chemical forms and biological uptake 

potential between aerosol DFe and seawater DFe we suggest adapting definitions similar to those 

suggested by Semple et al. (2004) and separate the “bioavailable” compound, which is freely 

available to cross an organism’s cellular membrane from the medium the organism inhabits at a 

given time, from the “bioaccessible” compound, which is available to cross an organism’s 

cellular membrane from the environment, if the organism has access to the chemical. DFe in the 

ocean can be viewed as the bioavailable form of Fe. Once transfer across the membrane occurs, 

further storage, transformation, assimilation, or degradation can take place within the organism. 

It is important to remember that bioavailability is always specific to an organism, and not all DFe 

is bioavailable to every organism. 

Aerosol DFe should not be viewed as bioavailable for ocean biota, because again the 

term “bioavailable” implies immediacy, i.e., what is available is available now (Semple et al., 

2004). Instead, we suggest aerosol DFe be viewed as “bioaccessible”, i.e., a compound which is 

in a form that is potentially bioavailable. Once it reaches the surface ocean, bioaccessible Fe 

may: 1) be immediately available to cross the organism’s cellular membrane or get chelated with 

seawater organic ligands and enter oceanic DFe pool, 2) be transitioned from dissolved to 
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(oxy)hydroxides, or scavenged into sinking particles and be physically removed from the surface 

ocean, or 3) become available to the organism after a period of time, i.e., undergo some 

transformation before it can be transported across the cell membrane, resulting in possible kinetic 

impediments to uptake. We acknowledge that, due to the complexity of different Fe uptake 

mechanisms by bacteria and eukaryotic phytoplankton, we do not have a complete understanding 

of which operationally defined forms of Fe are bioaccessible and to which groups of microbes. 

For example, further progress in the study of uptake mechanisms may lead to a reevaluation of 

the concept of bioavailability and the extension of the bioavailable fraction from the currently 

assumed forms (inorganic and complexed by weak organic ligands) to other forms such as small 

colloids. Nevertheless, we believe that the introduction of a bioaccessible form of aerosol Fe will 

motivate future studies involving genomics, transcriptomics, or similar techniques and contribute 

to our understanding of the biogeochemical transformation of Fe at the atmosphere-ocean 

interface. Studies may involve the understanding of the structure of the genome (through gene 

mapping, DNA sequencing, RNA transcripts, molecular mechanisms for Fe assimilation in a 

cell), the interplay of genetic and environmental factors in algae and heterotrophic bacteria, and 

characterization of the concentrations and binding strengths of Fe-binding organic ligands. Given 

that Fe cycles readily between the Fe(II) and Fe(III) oxidation states in the atmosphere and the 

oceans, it will be essential to learn how each redox form is affected by the processes listed 

above. When possible, we recommend Fe(II) and Fe(III) to be reported separately in atmospheric 

models and in situ measurement, as they together are considered the redox-active pool of Fe. 

Finally, future laboratory and in situ studies should clearly report the measurement conditions, 

the methodology employed, and the instrumentation used in order to accurately define which 
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chemical form of Fe is appropriate for the terminology used. Likewise, modelers results should 

clearly state which of the various chemical forms of Fe are most comparable to their results. 

4. Standardization of aerosol Fe measurements 

The standardization of aerosol Fe measurement methodologies for atmospheric and oceanic 

disciplines is critical for improved representation of Fe biogeochemistry. Currently, different 

research groups use a range of different leaching techniques (‘batch’ leaching, ‘flow-through’ 

leaching, and a combination of these two) with different types of Fe extraction solutions 

(seawater or high-purity deionized (DI) water), pH values of the solutions (from less than 2 to 

greater than 8), extraction times (from minutes to days), and (photo)reductant agents (oxalic, 

ascorbic, glyoxalic, and pyruvic acids) leading to large discrepancies in sol-Fe results (e.g., 

Sholkovitz et al., 2012). In addition to the range of different methods used for Fe extraction, 

different groups are using different operational definitions for fractional solubility of Fe in 

mineral dust. The sol-Fe is defined as the material that passes through a 0.2 µm pore diameter 

filters and commonly detected through Inductively Coupled Plasma-Optical Emission 

Spectroscopy (ICP-OES), or High Resolution Inductively Coupled Plasma–Mass Spectrometry 

(HR-ICP-MS) (e.g., Lim and Jickells, 1990; Zhuang et al., 1990; Bonnet and Guieu, 2004; Baker 

et al., 2006; Mackie et al., 2006; Wu et al., 2007; Buck et al., 2006, 2010; Aguilar-Islas et al., 

2010; Paris et al., 2011). The determination of dissolved Fe also involves chelation/solvent 

extraction methods (Landing and Bruland, 1987; Martin and Gordon, 1988), co-precipitation 

methods (Wu and Boyle, 1998), chelation/solid phase partitioning (Wells and Bruland, 1998), 

voltammetric techniques (Rue and Bruland, 1995; Gledhill and van den Berg, 1995), and the use 

of chelating ion exchange resins (Elrod et al., 1991; Obata et al., 1993; Measures et al., 1995; 

Bowie et al., 1998; Lohan et al., 2005). Here we follow the recommendation of Baker et al. 
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(2016) and suggest fine-grained Arizona Test Dust (with particle diameter < 1µm representing 

up to 90% of the particle volume, ISO -12103-1) to be used by different investigators to 

standardize the results of their leach techniques for determining DFe from aerosols, because of 

its reproducibility and a good imitation of long-range transported mineral dust over the open 

ocean. To describe short-term (seconds to minutes) and long-term (days to months) release of 

bioaccessible Fe from aerosol deposition to the ocean, two sequential leaches of the sample-

collection filters (see Table 2) can be used. In the first one, the sample leaching is conducted by 

quickly (~10 sec exposure time) passing Millipore Milli-Q (>18 MΩ cm-1) ultrapure water 

through an aerosol filter by applying a vacuum (Buck et al., 2006; Morton et al., 2013). This 

leaching technique is designed to yielding a measure of the ‘‘instantaneous’’ water-soluble (“DI 

soluble”) Fe fraction and can be viewed as representative of lower bound on aerosol solubility. In 

the second one, the sample is in the contact with a leach solution for 2 hours (with a heating step) 

and 25% acetic acid (HAc) and 0.02 M hydroxylamine hydrochloride solution are added to the 

vial as described in Berger et al. (2008). The “Berger-leached” Fe sets the higher bound on 

solubility. Both of these leaching solutions will yield a fraction of the bioaccessible Fe that can 

enter the oceanic DFe pool. However, the DI soluble will correspond to the fraction of aerosol Fe 

that that is immediately available for the uptake, while the Berger-leached aerosol Fe may 

become bioavailable with some kinetic impediments to uptake i.e., after being processed through 

an acidic, reducing zooplankton or protozoan gut, mobilized from particulate forms through 

interactions with siderophores, or from redox cycling (both photo-induced and associated with 

reducing micro-environments in fecal pellets and organic aggregates). Even though such 

descriptions are highly simplistic and may not be appropriate to fully characterize the 
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bioavailable fraction of aerosol Fe in the ocean (Shaked and Lis, 2012), they can be used by 

modelers to prescribe a range of bioaccessibility to atmospheric Fe (Mackey et al., 2015). 

We recommend the sample collection and seawater DFe speciation analysis be followed 

as outlined in the GEOTRACES Cruise and Methods Manual (Cutter et al., 2018). The complete 

details of DFe analyses can be found in Rijkenberg et al. (2014) and Sedwick et al. (2015). 

Briefly, samples for DFe should be separately collected from speciation samples in acid-cleaned 

low-density polyethylene bottles. These samples should then be filtered through <0.2 μm filters. 

Samples should be acidified to 0.024 M hydrochloric acid (HCl) with high purity HCl (Johnson 

et al., 2007). Dissolved Fe(II) can be determined by flow injection analysis with in-line 

preconcentration and chemiluminescence detection. DFe can be determined by flow injection 

analysis with in-line preconcentration on chelating resin followed by analysis using colorimetric 

technique or IC-PMS (Biller and Bruland, 2012; Rijkenberg et al., 2014; Sedwick et al., 2015; 

Buck et al., 2016; Wuttig et al., 2019). 

5. Constraining depositional fluxes 

Constraining depositional fluxes of aerosols is one of the major problems in the global 

biogeochemical cycling of atmospheric Fe. Particle removal by wet deposition processes 

(including both convective updraft rainout/in-cloud wet scavenging and washout from large-

scale precipitation) is the major source (~ 80%) of aerosol Fe to the surface of the open ocean 

(Fan et al., 2006). Both the magnitude of total depositional value and spatiotemporal variability 

of atmospheric fluxes of Fe remain unconstrained in global models because rainwater samples 

are difficult to collect on a routine basis, particularly over remote ocean areas. Similarly, the 

magnitude and distribution of DFe input to the ocean cannot be constrained by the observed 
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distributions of marine DFe alone using global marine biogeochemistry models because of the 

colocation of the compensating DFe deposition and scavenging rates (Pasquier and Holzer, 

2017). 

Deriving the atmospheric flux of radionuclide beryllium-7 (7Be) from its ocean inventory 

may provide the means to link atmospheric concentrations and fluxes of DFe (Baker et al., 

2016). The 7Be isotope (53.3-day half-life) is produced by cosmic-ray spallation and is deposited 

to the ocean surface primarily by precipitation. Under steady-state conditions in the open ocean, 

the removal rate of 7Be from the upper ocean due to decay should be equal to its atmospheric 

deposition rate which is in turn equal to the aerosol 7Be concentration multiplied by a bulk 

deposition velocity that accounts for both wet and dry deposition processes. Kadko et al. (2015) 

used bulk deposition velocities derived in this way to calculate fluxes of other aerosol species, 

such as total and soluble Fe in mineral dust, producing flux estimates that were within 40–50% 

of direct measurements. The 7Be method is advantageous, as it can provide fluxes for 

atmospherically delivered bioaccessible DFe. 

Application of the 7Be method may be limited to areas where wet deposition dominates. 

Additional aspects to consider are the interaction of rainwater with the ocean surface microlayer 

(SML), the variability in size-dependent wet removal efficiency for particles in the accumulation 

mode (with particle diameters within 0.1–1 μm; such as for anthropogenic particles), and the 

strong seasonal variability in atmospheric aerosol concentrations relative to that of 7Be. 

Suggested future studies should explore the application of the 7Be-tracer technique to aerosol dry 

deposition fluxes. The 7Be method needs to be tested in different ocean basins characterized by a 

wide range of precipitation rates to obtain Fe fluxes that could be used to constrain global models 

of Fe deposition. Examples of possible study locations include sites of long-term time series 
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which have available facilities, e.g., Cape Verde Islands, Bermuda, Hawaii, or in the 

Mediterranean. Other suggestions for reducing the uncertainty in aerosol fluxes were to run an 

offline 7Be atmospheric model (Liu et al., 2001) and compare the data with ocean measurements, 

deploying automated rain collectors on ships of opportunity, collecting atmospheric black carbon 

concentration and size distribution data concurrently with rainwater samples, and collecting 

particle-size spectra in the water column. Future activities should focus on capturing 

representative fluxes of aerosols to the ocean on a seasonal basis, not just during the extremes 

(which is often the case for mineral dust deposition). Fe isotopes present an additional way to 

constrain the source (lithogenic vs. anthropogenic) of iron in deposition (Waeles et al., 2007; 

Conway and John, 2014; Conway et al., 2019) and should be considered further. 

6. Anthropogenic and biomass burning aerosols: Fe solubility and behavior 

Over the open ocean, the global deposition flux of DFe from mineral dust is considerably higher 

than the flux of Fe from anthropogenic (largely combustion) and biomass-burning aerosols 

(Myriokefalitakis et al., 2018). However, due to their spatiotemporal distribution and higher 

fractional Fe solubility (Chuang et al., 2005; Guieu et al., 2005; Sedwick et al., 2007; Sholkovitz 

et al., 2009), combustion aerosols may play an important role in influencing the fluxes of DFe 

over oceanic regions with little dust input, downwind from industrialized regions, and/or near 

major shipping routes (Ito et al., 2019a). Furthermore, an ocean biogeochemistry model suggests 

that pyrogenic Fe-containing aerosols stimulate the marine productivity more efficiently than 

lithogenic aerosols, especially in the Pacific and Southern Ocean (Ito et al., 2019b). Because 

anthropogenic aerosols are small in size (i.e., < 1 µm) and found predominantly within the 

accumulation mode, the total amount collected on the filters is also small, complicating efforts to 

characterize the oxidation forms and mineralogy of aerosol Fe. Due to their small size and 
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chemical composition, the latter of which controls particle hygroscopicity, dry and wet removal 

rates of anthropogenic aerosols could be very different from those of mineral dust. In-situ studies 

on the effects of anthropogenic aerosols are difficult to carry out because even at relatively high 

concentration, anthropogenic aerosols might not deposit sufficient quantities of DFe to relieve Fe 

limitation and support visible, large-scale phytoplankton blooms (Meskhidze et al., 2005; 

Solmon et al., 2009). 

There is a need for improved characterization of the source-specific solubility in various 

types of combustion-sourced aerosols, and an assessment of the global mean and spatiotemporal 

fluxes of combustion-related DFe. To that end, other anthropogenic tracers, like nitrogen (N) or 

aerosol trace-metals, such as vanadium (V) or nickel (Ni) can be used for constraining 

anthropogenic sources of Fe. Synchrotron-based X-ray microspectroscopy techniques also 

provide a useful tool to characterize atmospheric concentration and oxidations states of Fe 

(Fe(II) or Fe(III)) and trace metals in anthropogenic aerosols in sub-micron size ranges (Oakes et 

al., 2012; Ingall et al., 2018). Improved assessments of bioaccessible Fe fluxes from biomass-

burning aerosols also require accurate estimates of the amount of biomass consumed during 

forest fires, the location of the fires relative to the availability of fuels, the timing of the fires 

during the burning season, and the aerosol transport from forest fire emissions (including the 

plume injection height and the vertical distribution of smoke) (Ito, 2011). 

7. The importance of the surface microlayer 

The SML represents a thin (~50 to 150 µm thick) gelatinous boundary between the atmosphere 

and ocean consisting of hydrophobic surfactants (e.g., fatty acids), hydrophilic surfactants (e.g., 

lipopolysaccharides), and complex assemblages of different microorganisms (Henrichs and 

Williams, 1985; Kuznetsova and Lee, 2002; Aller et al., 2005; Hawkins and Russell, 2010; 
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Cunliffe et al., 2013). The importance of the SML for Fe biogeochemistry has been recognized 

since the early 1970s. Studies suggest that aerosols, deposited through wet or dry deposition, 

often become trapped, leading to a considerable enrichment in the SML of estuarine, coastal, and 

open ocean areas (Duce et al., 1972; Piotrowicz et al., 1972; Cunliffe et al., 2013; Tovar-Sánchez 

et al., 2014; Wurl et al., 2017). The SML is a dynamic physicochemical barrier which is 

characterized by chemical properties very different from the bulk seawater (Liss and Duce, 2005; 

Zhang et al., 2003) and populated by large amounts of bacteria (Cunliffe et al., 2013). The SML 

could modify particle aggregation properties after both wet and dry deposition of mineral dust 

and influence the speciation and residence time of Fe in the surface ocean. Residence times for 

DFe and PFe in the SML are potentially long enough (minutes to hours) for Fe to undergo 

(photo)chemical and biological alterations within the microlayer (Ebling and Landing, 2017). 

Therefore, the SML is a potentially significant contributor to air-sea exchange processes 

affecting atmospherically delivered Fe and should be included in future modeling studies. 

However, modelers lack the necessary information to allow parameterization of ocean SML 

processes in global models. Future studies should aim at better characterizing the chemical 

composition and structure of organic matter found in the SML and explore the role of the SML 

in affecting the dissolution, speciation, and initial microbial interactions for atmospherically 

delivered DFe in the surface ocean. Organics in the SML could mobilize aerosol Fe from mineral 

dust through photochemical and heterogeneous reactions in the microlayer as well as chelate 

aerosol-derived DFe and lead to stable Fe-ligand complexes which are not prone to adsorption, 

aggregation and subsequent sinking. Fe mobilized from the oxides can then reenter the Fe cycle 

through biotic reductive, organic ligand-promoted, and/or photoreductive dissolution 

(Schwertmann, 1991). Studies should also be carried out to better characterize the residence time 
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of DFe and PFe delivered through atmospheric pathways and identify oceanic regions where the 

SML is expected to play important roles in Fe biogeochemistry (Ebling and Landing, 2017). 

Finally, SML-sourced material may become entrained in sea spray aerosols generated by bubble-

bursting processes and could potentially serve as an oceanic source of DFe and PFe in marine 

aerosols. 

8. Atmospheric and oceanic organic ligands 

Organic ligands control the conversion of bioaccessible Fe to bioavailable Fe in seawater by 

chelation which protects DFe from scavenging onto sinking particles. Past ocean studies have 

mostly focused on strong “L1” and weaker “L2” ligands based on their conditional binding 

strengths. Ligand strengths are operationally defined by their stability constants, determined 

from voltammetric studies (Gledhill and Buck, 2012). Although ligands play a central role in the 

global biogeochemical cycling of Fe, the sources and sinks of ligands and the mechanisms 

involved in the cycling of ligands are still poorly quantified. There is some evidence for stronger 

ligands being present in deliquesced aerosol solution (Kieber et al., 2001; Kieber et al., 2005; 

Willey et al., 2008) and cloud/rainwater (Cheize et al., 2012; Vinatier et al., 2016). These ligands 

could contribute to the stabilization of aerosol DFe in seawater, though strong ligands in 

seawater are usually assumed to have an oceanic origin (Hunter and Boyd, 2007). 

Electrochemical titration studies, used for the operational definition of the ligand concentrations, 

show that strong ligand concentrations are typically low in the open ocean (~0.44 nM or lower; 

concentrations of true siderophores as determined by LC-MS can even be at the 1 pM level, 

Mawji et al., 2008), though weaker ligand concentrations are slightly higher (~1.5 nM) (Gledhill 

and van den Berg, 1994; Rue and Bruland, 1995; Vraspir and Butler, 2009; Gledhill and 

Gerringa, 2017). Thus, atmospherically delivered DFe deposition events at the surface of the 
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ocean can quickly deplete the number of available “excess” L1 and L2 ligands. Therefore, part of 

the discussion was focused on improved understanding of “super-weak” ligands (e.g., L3 and L4 

ligands, with conditional stability constants logK����
	
��

 < 11, see Gledhill and Buck, 2012) of both 

atmospheric and marine origin (Bundy et al., 2015). Increasing evidence shows that super-weak 

ligands like hydroxy-polyacids, polysaccharides, and humic-like substances play a role in 

oceanic Fe complexation (Laglera and van den Berg, 2009; Laglera et al., 2011; Hassler et al., 

2011a, 2011b). Besides being a component of the bulk dissolved organic matter in seawater, 

such organics are commonly found at high concentrations (~ μM) in aerosols (Kawamura, 1993; 

Röhrl & Lammel, 2002; Graham, 2002; Willey et al., 2008; Fu et al., 2011; Paris and Desboeufs, 

2013; Gantt and Meskhidze, 2013), cloud/rainwater (Cheize et al., 2012; Vinatier et al., 2016), 

and the SML (Henrichs and Williams, 1985; Kuznetsova and Lee, 2002; Aller et al., 2005; 

Hawkins and Russell, 2010; Cunliffe et al., 2013) over different parts of the oceans and coastal 

regions. These organics are either directly emitted to the atmosphere by fossil fuel combustion 

and biomass burning or produced in the atmosphere by secondary photochemical oxidations of 

anthropogenic and natural volatile organic compounds (VOC) (Goldstein and Galbally, 2007). 

Moreover, it was suggested that the presence of a dimethylsulfide (DMS) oxidation products 

(e.g., sulfur dioxide (SO2), sulfuric acid (H2SO4), and methanesulfinic acid (CH3SO2H)), can 

increase release of soluble Fe(II) in atmospheric aerosols, providing and efficient mechanism by 

which phytoplankton can actively enhance the dissolution of iron within acidic aerosol particles 

in the marine atmosphere (Zhuang et al., 1992; Johansen and Key, 2006). Super-weak organic 

ligands could chelate atmospherically delivered DFe in the aqueous aerosol phase and form 

complexes which prevent aggregation and/or adsorption onto larger than 0.45 μm sized particles. 

By extending the lifetime of DFe in seawater from hours to days, these super-weak organic 
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ligands allow sufficient time for L1 or L2 ligands to be replenished in the dust-affected region 

through vertical mixing or biological production and release considerably increasing the 

probability of DFe in the ocean encountering L1 or L2 ligands (Croot and Heller, 2012; 

Meskhidze et al., 2017). Understanding the kinetics of how this heterogeneous mix of 

compounds with different binding strength complexes atmospherically delivered DFe, and how 

this is affected by other factors, such as pH (Avendaño et al., 2016) will be important to 

constrain in future studies. 

9. A conceptual model for the roles of particle size, residence time, and speciation 

Particle size distribution can have a significant effect on the amount of bioaccessible Fe in 

atmospheric aerosols. Aerosol size can have a direct effect on the chemical composition of Fe 

containing minerals (Claquin et al., 1999; Nickovic et al., 2013; Shi et al., 2009). Particle size 

also has an indirect effect on DFe content through chemical processing (e.g., Zhu et al., 1992; 

Spokes and Jickells, 1996; Meskhidze et al., 2003, 2005; Ito and Feng, 2010; Johnson and 

Meskhidze, 2013) and, to lesser extent, through physical size sorting during the atmospheric 

transport (Shi et al., 2011). Despite its importance, in situ measurements report a wide range in 

mineral aerosol size distribution (see Fig. 1 in Meskhidze et al., 2016). Such variability in size 

can lead to significant differences in atmospheric model-predicted concentrations of aerosol DFe 

and subsequent fluxes of bioaccessible Fe to the oceans (Meskhidze et al., 2016). Moreover, 

wetting of mineral dust particles through rainout or washout, or even during the leaching of the 

dust-laden filters can cause changes in particle physical size distribution through the breakage of 

dust grains and dissolution of salts (Dudhaiya and Santos, 2018). As a result of such changes, Fe-

containing nanoparticles (particles <0.1 μm in diameter) attached to the dust particles can be 

released into solution, thereby increasing DFe concentration. The opposite could happen when 



25 

 

DFe in aerosol/rainwater solution gets deposited to the surface ocean. In such a case, DFe can 

aggregate and form nano- to micron-sized (oxyhydr)oxide (FeOOH) particles, leading to a 

decrease in DFe concentration. Although several theoretical models (e.g., classical Derjaguin–

Landau–Verwey–Overbeek theory of colloidal behavior, Derjaguin et al., 1987; Verwey, 1947) 

have been proposed in colloid science to describe cluster formation as colloids possessing 

“sticky hard sphere” characteristics, colloids that interact only through short-range repulsive 

interaction, and for colloids possessing significant long-range repulsive interactions, presently 

there is a poor understanding of phase changes for mineral particles and its effect on DFe. These 

processes are further complicated by the presence/absence of atmospheric and oceanic organic 

ligands. Today it is clear that aerosols should not be treated as single particles (with either 

surrounding aqueous phase or submerged in raindrops), but as more dynamic and complex 

organic-inorganic aggregates. Such aggregates can both increase or decrease the DFe 

concentration in surface ocean water depending on (i) concentrations and complexing capacities 

of strong ligands that help set the solubility limit for Fe (Wagener et al., 2008; Ye et al., 2011; 

Fishwick et al., 2014; Chien et al., 2016), (ii) concentration of the weaker and super-weaker 

ligands that affect the cycling between soluble, colloidal, and particulate phases of Fe (e.g., 

Willey et al., 2008), (iii) photochemistry, driven by the production of superoxide through 

interaction of light with colored dissolved organic matter, or organic ligands (e.g., Voelker and 

Sedlak, 1995; Croot et al., 2008), (iv) the presence of SML components that may increase 

accumulation of aerosols at the ocean surface, such as adhesion to the polysaccharidic gelatinous 

phase (e.g., Wurl et al., 2017), (v) interaction with bacteria such as Trichodesmium colonies that 

can retain mineral dust and actively promote Fe mobilization (Rubin et al., 2011; Basu and 

Shaked, 2018), and (vi) the size distribution of deposited particles because of aggregation of 
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small particles to faster sinking larger particles (Ternon et al., 2010; Bressac et al., 2012,  2014; 

Ohnemus and Lam, 2015; Louis et al., 2017). It is well understood that these processes are 

crucial for an accurate representation of both the changes in the particle size distribution in the 

mixed layer and the residence times of mineral dust particles in the surface ocean. However, not 

all of the studies mentioned above have attempted to describe the processes mechanistically in 

the form of rate laws. Further laboratory measurements should, therefore, be carried out to 

elucidate atmospheric particle size changes as a result of both dry and wet deposition of particles, 

in the presence and absence of the SML. Furthermore, such studies should be carried out in 

seawater with varying bacterial abundance as well as DFe, colloidal particles, and ligand 

concentrations. Laboratory and field studies have demonstrated the crucial role played by the 

dissolved organic matter pool in the aerosol post-depositional processes (i.e., bioaccessibility, 

scavenging, and aggregation of DFe, Wagener et al., 2008, 2010; Wuttig et al., 2013; Bressac 

and Guieu, 2013). Detailed modeling studies are also needed to test the sensitivity of the system 

to key processes affecting residence time and speciation of aerosol Fe after deposition to the 

ocean. Such laboratory studies and model simulations should lead to a process-level 

understanding of atmospheric aerosol Fe biogeochemistry in the ocean at different 

spatiotemporal scales and help identify key processes that will improve the predictive power of 

ESMs. 

10. Using other trace elements for improved understanding of Fe biogeochemistry 

Lithogenic Fe and other dust-derived elements have similar delivery pathways to the ocean. 

However, several trace metals are characterized by unique biogeochemical cycling patters in the 

surface ocean. Therefore, multiple trace metals can be used to constrain the inputs of Fe. 

Leveraging measurements of a set of trace elements to create additional holistic understanding is 
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at the heart of the GEOTRACES science plan (www.geotraces.org/science/science-plan). There 

are several elements that share some—but not all—of the Fe cycling mechanisms, potentially 

allowing us to disentangle some of the compensating mechanisms (sources and sinks). 

Aluminum (Al) has traditionally been used to estimate Fe input (Measures and Vink, 2000). 

Aluminum (and titanium, Ti) has a predominantly crustal origin in seawater, and has no known 

biological function, meaning that its dissolved concentration is not strongly affected by 

biological activity. Resuspension of particles in nepheloid layers and along coastal shelves (Puig 

et al., 2008; Durrieu de Madron et al., 2017) is also a source that can be indistinguishable from 

aerosols in some locations. Al and Fe have similar (and variable) fractional solubilities, while 

that of Ti is significantly lower. Both dissolved Al and Ti have a longer residence time in 

seawater (with respect to scavenging) than Fe and can be used as a measure of integrated Fe 

input into the ocean over seasonal timescales (Dammshäuser and Croot, 2012). On the contrary, 

the distribution of DFe with its shorter residence time often correlates with particulate forms of 

Al from recent dust deposition events (Jickells, 1999; Schüßler et al., 2005). Particulate Al and 

particulate Ti can also be used to estimate lithogenic particle mass and seem less affected by 

scavenging of Al and Ti from the dissolved phase. Another advantage of using Al is that its 

distribution and cycling has been implemented in an ocean general circulation model (van Hulten 

et al., 2013). Thorium isotopes could also be used to quantify scavenging onto particles and re-

dissolution rates (Wang et al., 2016). 

Other elements, such as vanadium (V), chromium (Cr), manganese (Mn), and lead (Pb) 

are enriched in anthropogenic aerosols from power plants or biomass burning and thus can be 

used to relate changes in Fe solubility to aerosol composition (Herut et al., 2016). The cycling of 

Mn shares many of the complexities of Fe cycling (biological function, more than one redox 
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state, organic complexation), and is also delivered mostly by dust to open-ocean waters. Its 

fractional solubility also seems to be strongly affected by the aerosol source (Buck et al., 2013). 

Other trace metals from mineral dust, such as gallium (Ga) or thorium (Th), can also be used to 

derive indirect estimates of dust deposition using the dissolved distribution of these metals in 

seawater (Baker et al., 2016). 

11. Regional and global modeling  

Oceanic Models: Ocean Fe biogeochemical models are still highly simplistic and generic in their 

description of Fe input from aerosol deposition, and in the role of Fe speciation in it, especially 

when compared to the level of detail now found in atmospheric chemistry models. Most ocean 

models still assume a constant weight fraction of Fe in mineral dust and a constant dissolved Fe 

fraction in aerosols (Parekh et al., 2004; Dunne et al., 2013; Aumont et al., 2015) but a 

prescribed variable solubility is becoming applied as well  (Albani et al., 2016). Photochemistry 

has only been modeled in a few regional studies (Weber et al., 2005; Ye et al., 2009), or in a 

simplified manner globally (Tagliabue and Völker, 2011). The properties of organic ligands for 

Fe in the ocean are less well constrained than for Fe in the aerosols. Most models use a fixed 

concentration of one generic Fe-binding ligand (Tagliabue et al., 2016) and only a few models 

describe the spatiotemporal variability of ligands either prognostically (Völker and Tagliabue, 

2015) or through diagnostic relations to apparent oxygen utilization and dissolved organic carbon 

(Misumi et al., 2013). 

For a better description of the bioaccessible Fe input into the ocean from aerosol 

deposition in future modeling studies, it will be prudent to investigate the roles of (i) 

colloidal/nanoparticulate Fe vs. that of DFe; (ii) photochemically produced Fe(II) and the 
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photochemical breakdown of ligands; (iii) the conversion of bioaccessible Fe into bioavailable 

Fe within the SML; and (iv) super-weak ligands (e.g., L3 and L4), such as organic ligands 

deposited with atmospheric particles, and ligands in the SML and the upper ocean such as humic 

acids, and polysaccharides (Bundy et al., 2015) and (v) the timescales and variable/reversible 

scavenging rates of DFe (Tagliabue et al., 2016). To gain some understanding of the possible 

roles and sensitivities for several of these processes, a useful strategy could be one-dimensional 

modeling of less-well-known processes prior to inclusion into global biogeochemical models. 

Many of the suggested areas for improvement of ocean modeling require kinetic 

information from carefully designed and implemented laboratory studies that can yield a 

methodological description of individual processes. The experimentalist community can improve 

the mathematical formalism of future publications by including the descriptive equations of the 

mechanisms being studied. The biogeosciences literature is often lacking in mathematical 

formalism leading to misinterpretation, miscommunication, and confusion. By explicitly 

describing the assumed mathematical equations of specific biogeochemical mechanisms in future 

publications, authors will improve reproducibility and testability. In turn, modelers can use the 

data from experimentalists as intended and experimentalists can see how modelers use their data. 

To give an example: Iron biogeochemical models often describe the scavenging loss of DFe as 

the product of the inorganic fraction of dissolved iron concentration (often denoted Fe’, and 

encompassing the inorganic forms of both Fe(II) and Fe(III)), multiplied by a concentration of 

the scavenging phase (e.g., organic detritus) in mass units (i.e., mass per volume), and a specific 

scavenging rate (Tagliabue et al., 2016). Experimentalists might find it more reasonable to use 

the particle surface instead of its mass when describing scavenging in an experiment. For 
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modelers, it would then be extremely helpful to have some indication of the specific surface for 

the scavenging phase. 

Atmospheric models: Mineral dust and other Fe-containing particles are injected in the 

atmosphere at the source regions (desert soils, biomass burning, anthropogenic). Models 

prescribe size distribution and mineralogy (for aeolian dust) and various initial Fe solubilities 

(for different combustion sectors) at the source regions. Iron solubility is typically defined as the 

ratio of DFe over total Fe. Fe in atmospheric mineral dust is primarily in the form of Fe-

(oxyhydr)oxides, such as hematite (α-Fe2O3), goethite (α-FeO(OH)), and ferrihydrite 

(Fe2O3∙0.5H2O) and as ferric iron (Fe(III)) substituted into aluminosilicate clay minerals (Dedik 

et al., 1992; Hoffmann et al., 1996; Arimoto et al., 2002). In addition to Fe-containing minerals, 

atmospheric models now prescribe detailed mineralogy of wind-blown dust from the major 

desert regions. Mineralogical composition has been shown to play a critical role in atmospheric 

transport and transformation of mineral dust particles (Meskhidze et al., 2005; Solmon et al., 

2009; Journet et al., 2008; Johnson and Meskhidze, 2013; Perlwitz et al., 2015; Scanza et al., 

2015; Raiswell et al., 2017). The average Fe content of 3.5% is typically prescribed for mineral 

dust (e.g., Duce et al., 1991), though it has been shown that this value can vary considerably in 

upper crustal minerals depending on the underlying mineralogy (and geography) of the dust 

source (Journet et al., 2014; Nickovic et al., 2013). To characterize so-called readily released Fe 

(Mackie et al., 2006) associated with ultra-fine, poorly crystalline Fe (oxyhydr)oxides (Shi et al., 

2011) produced through sand-blasting (the dominant process in producing fine dust aerosols 

during saltation Gillette, 1978; Kok, 2011), atmospheric models prescribe an initial dust Fe 

solubility between 0.1 to 0.45% (Myriokefalitakis et al., 2018). The variable (4.3% on kaolinite 

and 3% on feldspars) initial solubility of the emitted Fe-containing dust particles has also been 
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used (Ito and Xu, 2014). The initial Fe solubility for combustion aerosols ranges from 4 to 80% 

(Myriokefalitakis et al., 2018). The majority of Fe mass found in the atmosphere is contained 

within mineral dust aerosols emitted from continental sources. However, due to their 

spatiotemporal distribution and higher Fe solubility, aerosols originated from wildfires and 

biomass burning (Guieu et al., 2005; Oakes et al., 2012; Paris et al., 2010) and anthropogenic 

combustion processes, such as coal and oil fly ash (Chung et al., 2005; Chen et al., 2006; 

Sedwick et al., 2007; Luo et al., 2008), including ship oil combustion (Ito, 2013) have also been 

included in atmospheric models (Matsui et al., 2018; Ito et al., 2019a). During atmospheric 

transport, coating of Fe-containing dust particles by acidic compounds (e.g., sulfur, SOx, and 

nitrogen, NOx, compounds) and organic species (e.g., DOC) increases the hygroscopicity of dust 

particles, allowing them to be engaged in complex physical and photo(chemical) interactions 

(Duce and Tindale, 1991; Zhuang et al., 1992; Meskhidze et al., 2003, 2005). The resulting solid-

, aqueous-, and gas-phase reactions make aerosols more acidic and increase Fe mobilization 

(Johnson and Meskhidze, 2013; Ito and Shi, 2016). Atmospheric Fe biogeochemistry models 

now routinely consider the three main mechanisms of Fe dissolution from atmospheric aerosol 

(i.e., proton-promoted, organic ligand-promoted, and photoreductive) with photochemical redox 

cycling between Fe(III) and Fe(II) (Myriokefalitakis et al., 2018). 

However, some potentially important processes are currently missing from atmospheric 

models. Future models should include atmospheric organic ligands, incorporate some novel 

pathway initiated by gaseous uptake of hydroperoxyl radical (HO�
∙ ) and followed by Cu–Fe 

redox coupling (Mao et al., 2013), account for new pathways for efficient formation of 

secondary organic polymeric particles catalyzed by Fe, and better represent larger (>10 μm in 

diameter) dust particles. These suggestions are based on some of the recent studies that have 
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shown that atmospheric DOC species are capable of extending the lifetime of atmospherically 

delivered DFe in the ocean (Meskhidze et al., 2017). The Cu–Fe redox coupling that has been 

incorporated in aqueous aerosol and cloud chemistry models (Herrmann et al., 2000) should be 

reevaluated as a mechanism to sustain nighttime Fe(II) and dominate Fe(III) reduction in the 

absence of Fe(III)–organic complexes (Mao et al., 2017). Recent studies have also shown that 

oxidative polymerization of polyphenols and metal-catalyzed polymerization of dicarboxylic 

acid could be important sources of Fe-complexing atmospheric organic ligands (Slikboer et al., 

2015; Tran et al., 2017). Finally, “giant” sand-sized (> 63 µm in diameter) particles, often found 

thousands of kilometers away from the source (Stuut and Prins, 2014; van der Does et al., 2018), 

could influence Fe biogeochemistry by both increasing atmospheric fluxes of Fe and scavenging 

of DFe from the surface ocean. Other sources of Fe from atmospheric aerosols which are 

attributed to volcanic eruptions (van der Does et al., 2018); Duggen et al., 2010; Langmann et al., 

2010; 2013) and to a lesser extent meteors (Johnson, 2001) have also been identified, but are not 

included in current atmospheric models. 

Currently, there are two different approaches to parameterize Fe dissolution rates. In a 

top-down approach, Fe dissolution rates for Fe-containing aerosols used in the models are tuned 

with the data from field measurements. As most of the field measurements are carried out in the 

Northern Hemisphere, such studies often lead to an overestimate of aerosol Fe solubility in the 

Southern Hemisphere. In a bottom-up approach, Fe dissolution rates for Fe-containing aerosols 

are fit to the data from laboratory experiments, often using mineral dust samples from arid 

regions. Such studies generally lead to an underestimate of aerosol Fe solubility in both the 

Northern and the Southern Hemispheres. In the Northern Hemisphere, high Fe solubility at low 

concentration can be reproduced by mixing the mineral dust with combustion aerosols of higher 
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Fe solubility (Ito, 2013). Today the vast majority of ambient data that can be used for model 

comparison of aerosol Fe comes from research cruise measurements (see Figure 6 in Wang et al., 

2015). While cruise measurements significantly help advance our understanding of Fe 

biogeochemistry (both in the atmosphere and in the ocean), they provide limited information on 

the spatiotemporal distribution of bioaccessible Fe in atmospheric aerosols. 

All participants agreed that detailed long-term in situ measurements that can monitor both 

atmosphere and ocean properties are also necessary. Long-term observations that can link 

atmospheric material transport and marine biogeochemistry would facilitate both 

communications between groups working in different areas and development of universal 

parameterizations for implementation in numerical models (Brévière et al., 2015). The temporal 

resolution of sampling at the sites should be sufficient to resolve variability in both atmospheric 

deposition and ecosystem responses. In such case, the time series sites could become focal points 

for detailed in-depth experiments and process-level studies that can address wet and dry 

deposition processes, cycling of different Fe phases within the SML and the photic zone, and the 

kinetics for aerosol-derived bioaccessible Fe transformation into 

bioavailable/colloidal/particulate forms in seawater. Participants agreed that the priority could be 

given to a few island sites, where long-term records from island sampling sites exist (e.g., 

Bermuda, Barbados, Miami). However, building new stations that monitor both atmosphere and 

ocean properties is also necessary. New long-term observing programs should be promoted 

downwind from dust source areas in the Southern Hemisphere (South America, Australia, South 

Africa), where observations are very sparse, and the ocean ecosystem is expected to be most 

sensitive to Fe inputs. For future locations of long term in situ measurements, we follow the 

recommendations of the Group of Experts on Scientific Aspects of Marine Environmental 
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Protection (GESAMP) Working Group 38 (Duce and Liss, 2011). Stations in the North Atlantic 

(e.g., Barbados, Bermuda, Miami, Izaña, French Guiana, Iceland) will play an important role by 

making measurements of aerosols and deposition which will serve as the critical test-bed data for 

the further development of dust transport models. The station in the Falkland (or Las Malvinas) 

Islands could be ideal for measuring Fe transport from the sources in southern South America 

(Gassó and Stein, 2007; Johnson et al., 2011), which is believed to be one of the major sources of 

aerosol Fe to the Southern Oceans. Due to difficult logistics and little dust, there are not too 

many other good options in the Southern Ocean. Nevertheless, the Cape Grim Baseline Air 

Pollution Station, located in remote northwestern Tasmania, Reunion Island, Marion Island, and 

Prince Edward could also be considered. In the North Pacific, Midway island is ideally situated 

to monitor the transport of mineral dust and anthropogenic sources of Fe from the Asian 

continent. Norfolk and Chatham Islands in South Pacific are well suited to monitor Australian 

sources, that are believed to be the major source of dust for the South Pacific and the Southern 

Ocean. The Maldive Islands in the Indian Ocean receives great quantities of dust and pollution 

largely transported from the Indian subcontinent during the Northeast Monsoon. 

One way to evaluate the skill of atmospheric models has been to test their ability to 

reproduce the observed log-log plots of the dissolved Fe fraction (%DFe=DFe/FeT × 100) versus 

total Fe (FeT) loading. The linear dependency detected for individual datasets plotted as the log-

log plots is often interpreted as a combination of two endmembers corresponding to a low iron 

solubility (for Fe from mineral dust) and a high solubility (for Fe from combustion). It is 

generally accepted that the linear dependence (on the log-log plots) holds despite using i) a range 

of different leaching techniques, ii) types of Fe extraction solutions, iii) pH values of the 

solution, iv) extraction times, v) (photo)reductant agents, vi) operational definitions for fractional 
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solubility of Fe in mineral dust, and vii) Fe measuring instruments. However, the linear 

dependency in the log-log space may also be an artifact of plotting two variables against each 

other that are not independent. Expressed as a function of FeT, %DFe is inversely related to FeT. 

This forces an asymptotic curve in linear space and a linear dependency in log-log space. To 

visualize this artifact, 1000 random numbers were chosen between 0 and 100 for FeT and 

between 0 and 3 for DFe, while not allowing for numbers of DFe > FeT. The DFe and %DFe was 

calculated and plotted vs. FeT in Figures 1a, b and log(%DFe) was plotted vs. log(FeT) in Figure 

1c. An analogous web-based animated figure (https://zzqvaay3twhzlhnmvpvdvq-

on.drv.tw/Web/Fe_Function.html) allows custom changes in both DFe and FeT that are displayed 

in three plots: DFe vs. FeT (showing the randomness), %DFe vs. FeT (showing the asymptotic 

relationship), and log(%DFe) vs. log(FeT) (showing the linear relationship). The asymptotic 

nature of the %DFe vs. FeT and the linear dependency of the log-log plots are thus generated 

regardless of the data that is randomly chosen. Furthermore, the linear curve in the log-log plot 

has a slope of close to -1 as is expected when taking the logarithm of an inverse function. These 

values are somewhat different from log(%DFe) vs. log(FeT) relationship reported by 

Myriokefalitakis et al. (2018) (-0.34, 1.10, and 0.30 for the slope, intercept, and R2 value, 

respectively). Nevertheless Fig.1 suggests that the interpretation of the %DFe vs. FeT 

relationship as a combination of two endmember aerosol types should be accompanied by other 

parameters that can be used to evaluate the contribution from combustion aerosols (e.g., Srinivas 

et al., 2012), mapping organic coatings and characterization of single-particle oxidation state of 

Fe-containing atmospheric particles (e.g., Takahama et al., 2008) or characterization of 

atmospheric aging and chemical weathering of mineral dust (e.g., Shi et al., 2011). 

12. Prioritization matrix  
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Table 3 shows a science prioritization matrix of a number of Fe-biogeochemistry research areas 

from four broad categories: Atmospheric Model Representation, Ocean Model Representation, 

Atmospheric Measurement Methodologies, and Ocean Measurement Methodologies. On the 

modeling side, a number of topics with the lowest level of understanding and the highest impact 

if achieved include parameterization of bulk aerosol deposition fluxes (both wet and dry), aerosol 

size-resolved mineralogy, Fe(II)/Fe(III) partitioning and photochemical cycling, and 

distribution/characterization of Fe complexing organic ligands. On the measurement side, they 

are: a characterization of individual particle acidity, Fe(II) content, and the bioavailable fraction 

of aerosol Fe. Nearly all of these topics affect the residence time and concentration of DFe in the 

ocean, are related to the atmospheric fluxes of aerosols, and Fe(II)/Fe(III) interaction with 

organic ligands both in the atmosphere and seawater. 

Within the Atmospheric Model Representation category, topics pertaining to size-

resolved properties were mostly classified as having a lower level of understanding and higher 

impact if achieved compared to bulk aerosol properties. Topics such as aerosol size-resolved 

Fe(II)/Fe(III) partitioning and Fe-complexing organic ligands in the atmosphere were ranked at a 

low level of understanding but were assigned high impact if achieved. Most of the topics in the 

Ocean Model Representation category were evaluated as low understanding but at a medium or 

high impact if achieved because of their importance in determining the surface concentration and 

residence time of DFe. Several topics in Atmospheric and Oceanic Measurement Methodologies 

had low levels of understanding because of the difficulty in making ambient measurements 

and/or relating laboratory results to the ambient environment, i.e., aerosol acidity, bioavailable 

Fe, Fe speciation in the ocean and kinetic measurements (e.g., ligand degradation and 

scavenging). 
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Nine topics were identified as high difficulty and/or high cost, and seven of these were 

also ranked as low understanding and high impact if achieved: Aerosol size-resolved 

Fe(II)/Fe(III) partitioning, wet/dry removal of aerosols, surface microlayer and its chemical 

composition, aerosol acidity, bioavailable Fe, Fe speciation within the particulate and dissolved 

phases, and kinetic measurements of ligand transformations in seawater. Broadly, these are the 

areas where concerted efforts such as large-scale field campaigns and joint multidisciplinary 

laboratory studies could lead to more cost-effective ways to collectively address these topics. 

Five topics, atmospheric model representation of aerosol bulk Fe(II)/Fe(III) partitioning and Fe 

complexing organic ligands, ocean model representation of size/phase-resolved residence time 

and vertical distribution of Fe, and atmospheric measurements of DFe(II) were ranked as low 

scientific understanding, high impact if achieved, and medium difficulty, and thus are worth 

targeting in the near future. 

13. Conclusions and suggestions for future work 

Improved understanding of processes controlling Fe speciation and residence time at the 

atmosphere-ocean interface requires additional laboratory studies, field measurements, and 

modeling research. Several specific ideas are summarized below: 

13.1 Laboratory experiments and in situ field measurements 

Laboratory studies are needed on model systems containing Fe-chelating organic compounds 

found in both the atmosphere and ocean, while field measurements are crucial for understanding 

the in-situ transformations of Fe resulting from aerosol deposition to the surface ocean. New 

studies need to be conducted on natural and anthropogenic aerosols of variable size distribution, 

chemical composition, and mineralogy. The experiments should be carried out at different 
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temperature, relative humidity, acidity, and concentrations of organic compounds to mimic 

atmospheric photo(chemical) reactions occurring in the bulk phase and the surface of the 

particles. Future laboratory and field measurements should focus on: 

● Standardizing Fe measurement methodologies for both aerosols and seawater. 

● Developing a mechanistic understanding of issues related to bioavailability of different 

forms of Fe found in the atmosphere and in the ocean. 

● Improving characterization of aerosol water content and acidity and their collective 

impact on Fe dissolution. 

● Examining atmospheric and oceanic weak ligands such as dicarboxylic acids, hydroxy-

polyacids, polysaccharides, and humic-like substances and their role in Fe complexation 

in the ocean. 

● Using large, trace-metal-clean mesocosms to investigate dust-related processes in the 

surface ocean. 

● Studying the role of the SML for both mobilization of total aerosol Fe to DFe and the 

transformation of bioaccessible Fe into bioavailable DFe in seawater. 

● Analyzing the scavenging of aerosol Fe after deposition to seawater and examining the 

phase changes (from dissolved to (oxy)hydroxides) during Fe precipitation in seawater 

with variable particulate matter and DFe concentrations. 

● Analyzing the morphology, size, mineralogy, and Fe oxidation state of individual aerosol 

particles in the samples collected in multiple locations over the oceans using a 

combination of synchrotron total reflection X-ray fluorescence (SR-TXRF) and the 

angle-dependent measurements and/or X-ray absorption near-edge structure (XANES) 

spectroscopy. 
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● Chemical and biochemical analysis of ocean SML and rainwater samples using standard 

test dust and real aerosol samples for understanding the Fe-complexing potential of key 

organic ligands. Studies that use genetically tractable model marine bacteria strains for 

probing bioavailability of microlayer/Fe solutions would be particularly useful. 

● In-situ speciation of Fe(II) and Fe(III) in seawater, including the physical speciation 

(particulate, colloidal, and dissolved) as well as the chemical speciation (e.g., inorganic 

Fe, ligand-bound Fe, and nano-particulate Fe). Special attention should be paid to the 

organically bound Fe fraction in seawater, as organic molecules can greatly affect the 

bioaccessible forms of Fe in atmospheric aerosols. Studies that characterize the Fe-

binding ligands using a combination of voltammetry techniques and liquid-

chromatography coupled to mass spectrometry will be particularly helpful in advancing 

our knowledge of organic Fe-binding ligands both in deliquesced aerosols and seawater. 

How these compounds are partitioned into the truly dissolved and colloidal phases will 

also shed additional insight into the physicochemical speciation of Fe. 

● Studying the kinetics of aerosol-derived bioaccessible Fe transformation into 

bioavailable/colloidal/particulate forms of Fe in seawater to elucidate the role of in-situ 

speciation on the Fe biogeochemistry. These measurements will likely involve the 

integration of knowledge, methods, and expertise in atmospheric chemistry, dust/aerosol 

geochemistry, organometallic geochemistry, photochemistry, aquatic geochemistry, 

molecular biology, and chemical and biological oceanography. 

13.2 Models  

Global 3-D chemistry-transport (CTMs) and general circulation (GCMs) models predict the 

mean global atmospheric deposition fluxes of FeT and DFe into the ocean in the range of 10–30 
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Tg Fe yr-1 and 0.2–0.4 Tg Fe yr-1, respectively (Myriokefalitakis et al., 2018). The global ocean 

biogeochemical models use atmospheric fluxes of DFe in a range of 0.08–1.8 Tg DFe yr-1 

(Tagliabue et al., 2016). Future improvements to model representation of Fe biogeochemistry 

should include: 

● Fe speciation/phases for DFe (Fe(II) and Fe(III)) for atmospheric and PFe, DFe, CFe) in 

the oceanic models. 

● A more clearly defined and detailed Fe deposition and dissolution mechanism (along with 

the nomenclature). 

● Detailed kinetics of aerosol bioaccessible Fe transformation into bioavailable/colloidal/ 

particulate forms of Fe in seawater. 

● The details of reversible scavenging: Formulation of the adsorption/desorption rates (0th 

order, 1st order, or 2nd order kinetics), particle types, sizes, and sinking speeds. 

● Inclusion of other (e.g., Cu, Al, etc.) trace elements in addition to Fe. 

● Ligand modeling and ligand-Fe complex formation with the impact on bioavailability. 

● Model accessibility (e.g., A Working Environment for Simulating Ocean Movement and 

Elemental Cycling (AWESOME OCIM) initiative, 

http://www.mtel.rocks/mtel/awesomeOCIM.html), which is focused on global 

distributions and long time-scales. This concept could be amended for short time-scales 

and specific experiments by a 1-dimensional community model with an interface to 

include or exclude specific processes. (Additional features can be directly suggested on 

the AWESOME OCIM github repository: github.com/hengdiliang/AWESOME-OCIM-

v1.1). 
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● Increase openness - Developing open-source models that are available online and 

published along with the modeling publications to improve testability and reproducibility, 

through the use of tools like GitHub, BitBucket, or GitLab (e.g., the DOE E3SM model 

github.com/E3SM-Project). 
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Tables 

Table 1. Suggested operational definitions of Fe to be used in deliquesced aerosol solution, 

cloud/rainwater, and seawater 

Form Oxidation 

state 

Symbol Definition 

Particulate  PFe Retained by 0.45 or 0.2 μm membrane filter 

Colloidal CFe Passes through a 0.45 or 0.2 µm but is retained by a 

0.02 µm filter 

Dissolved DFe Passes through 0.2 µm filter 

Soluble SFe Passes through a 0.02 μm filter 

 

 

 

Table 2. Suggested measurement standards: leaching methods for atmospheric dust samples 

Leach type Definition 

DI soluble Low-solubility limit: Measured by vacuum-suction of 100 mL of ultra-

high purity (UHP) water through the filter within ~10 s 

Berger High-solubility limit: Measured by addition of 4.4 M acetic acid (HAc) 

with 0.02 M hydroxylamine hydrochloride solution 
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Table 3. Science Prioritization Matrix* 

Parameter  Current 

understanding 

Impact if 

achieved 

Difficulty/ 

resources needed 

Atmospheric Model Representation 
Aerosol bulk mass concentration 

Aerosol bulk mass fluxes 

Aerosol particle size distribution in the marine 

boundary layer 

Giant aerosol particles 

Aerosol bulk mineralogy/phase 

Aerosol size-resolved mineralogy/phase 

Aerosol bulk Fe(II)/Fe(III) partitioning 

Aerosol size-resolved Fe(II)/Fe(III) partitioning 

Atmospheric processing of aerosol 

Wet/dry removal of aerosols 

Fe complexing organic ligands 

 

Med 

Low 

Med 

Low 

Med 

Med 

Low-Med 

Low  

Low-Med 

Low 

Low 

 

High 

High 

High 

High 

Med 

High 

High 

High 

High 

High 

High 

 

Med 

Med 

Med 

Med 

Med 

High 

Med 

High 

Med 

High 

Med 

Ocean Model Representation 
Surface microlayer and its chemical composition 

Fe(II)/Fe(III) photochemical cycling 

Fe(II) ligand distribution (if any) 

Fe(III) ligand distribution 

Size/phase-resolved residence time and vertical 

distribution of Fe 

Size/phase-resolved particle flux 

 

Low 

Low 

Low 

Med 

Low-Med 

 

Med 

 

Med-High 

High 

Low-Med 

High 

High 

 

High 

 

High 

Med-High 

Med 

High 

Med 

 

Med 

Atmospheric Measurement Methodologies 
Ambient aerosol collection coupled with the gas 

phase measurement 

Aerosol acidity 

DFe(II) 

Operationally defined DFe(III)  

Bioavailable Fe 

 

Low 

 

Low 

Low 

Med 

Low 

 

Med 

 

High 

High 

High 

High 

 

Med 

 

High 

Med 

Med 

High 

Ocean Measurement Methodologies 
Fe speciation from particles to truly dissolved 

Kinetic measurements (ligand degradation, 

scavenging) 

 

Low 

Low 

 

High 

High 

 

High 

High 

 

*Different colors are used for “Low”, “Med”, and “High” to facilitate the reading of the table. 
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Figures  

 

 

 

Figure 1. (a) Random set of Dissolved Fe and total Fe values, (b) dissolved Fe fraction vs. total 

iron loading, and (c) logarithm of dissolved Fe fraction vs. logarithm of FeT. The solid red line 

shows a linear trend with a slope of -0.97 and the intercept of 2.00 and x=log10(FeT) 

(a) (b) (c) 




