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Abstract. Accurate predictive modeling of the ocean’s
global carbon and oxygen cycles is challenging because of
uncertainties in both biogeochemistry and ocean circulation.
Advances over the last decade have made parameter opti-
mization feasible, allowing models to better match observed
biogeochemical fields. However, does fitting a biogeochemi-
cal model to observed tracers using a circulation with known
biases robustly capture the inner workings of the biological
pump? Here we embed a mechanistic model of the ocean’s
coupled nutrient, carbon, and oxygen cycles into two circu-
lations for the current climate. To assess the effects of bi-
ases, one circulation (ACCESS-M) is derived from a climate
model and the other from data assimilation of observations
(OCIM2). We find that parameter optimization compensates
for circulation biases at the expense of altering how the bio-
logical pump operates. Tracer observations constrain pump
strength and regenerated inventories for both circulations,
but ACCESS-M export production optimizes to twice that
of OCIM2 to compensate for ACCESS-M having lower se-
questration efficiencies driven by less efficient particle trans-
fer and shorter residence times. Idealized simulations forc-
ing complete Southern Ocean nutrient utilization show that
the response of the optimized system is sensitive to the em-
bedding circulation. In ACCESS-M, Southern Ocean nutri-
ent and dissolved inorganic carbon (DIC) trapping is par-
tially short circuited by unrealistically deep mixed layers.
For both circulations, intense Southern Ocean production de-

oxygenates Southern-Ocean-sourced deep waters, muting the
imprint of circulation biases on oxygen. Our findings high-
light that the biological pump’s plumbing needs careful as-
sessment to predict the biogeochemical response to ecologi-
cal changes, even when optimally matching observations.

1 Introduction

The ocean’s nutrient, carbon, and oxygen cycles are of cen-
tral importance for the climate and the fertility of the ocean.
The cycling rates and patterns are shaped by the subtle in-
terplay between the ocean circulation and the generation,
transport, and respiration of organic matter (the biological
pump) as well as by air–sea gas exchange. Building robust
predictive models of the ocean’s biological pump poses a
formidable challenge because of the myriad of biogeochemi-
cal processes that must be parameterized. Current prognostic
earth-system models are computationally expensive, which
prohibits systematic parameter space exploration. Relatedly,
the long timescales of the global ocean circulation make it
expensive to spin up earth-system models by brute-force time
stepping, and differences among models have been shown
to reflect differences in spin-up strategy (Séférian et al.,
2016), compounding the parametric uncertainties. As a result
of these computational challenges, simulations with earth-
system models have made widely varying predictions of fu-
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ture ocean biogeochemistry (Bopp et al., 2013; Cocco et al.,
2013; Henson et al., 2022).

To reduce the parametric uncertainties, biogeochemical
parameters can be objectively determined by minimizing the
quadratic mismatch between model-predicted and observed
tracer distributions. Systematic parameter optimization is
made possible by embedding the biogeochemical model in
climatological steady flow and efficiently solving the gen-
erally nonlinear equations of the system directly for steady
state using Newton-type implicit solvers (e.g., Kwon and
Primeau, 2006). This approach exploits the matrix represen-
tation of the discretized advective–diffusive flux-divergence
operator (the “transport matrix”; e.g., Khatiwala et al., 2005;
Primeau, 2005; Chamberlain et al., 2019) and has been
applied to a number of biogeochemical cycles embedded
in data-assimilated ocean circulation models (e.g., Primeau
et al., 2013; DeVries, 2014; Teng et al., 2014; Holzer et al.,
2014; Pasquier and Holzer, 2017; DeVries and Weber, 2017;
Wang et al., 2019, to cite a few).

When the circulation is data-assimilated to provide a real-
istic representation of the ocean’s advective–eddy-diffusive
transport, optimizing biogeochemical parameters is a natural
strategy for obtaining robust representations of the ocean’s
biogeochemical cycles. However, Kriest and Oschlies (2015)
demonstrated that optimal parameters for the Model of
Oceanic Pelagic Stoichiometry (MOPS; Kriest and Oschlies,
2015) differ depending on the circulation model that is used.
This raises the following questions: if the circulation is taken
from a climate-model simulation with known biases in the
ocean’s physical state, do optimized biogeochemical param-
eters still provide a reliable estimate of the ocean’s biogeo-
chemistry, and are the simulated responses of the system to
either biogeochemical or physical perturbations robust?

To answer these questions, we develop a relatively simple
model (dubbed PCO2 here) of the coupled phosphorous, car-
bon, and oxygen cycles and contrast the properties of its bio-
logical pump and its response to perturbations depending on
whether the model is optimized for a data-assimilated circu-
lation or for a climate-model-derived circulation. The PCO2
model was constructed with a particular focus on capturing
the coupling between oxygen and organic-particle respira-
tion. We use a mechanistic formulation of nutrient uptake
rather than an observation-based parameterization so that
biological production can fully respond to the embedding
circulation (and also to make PCO2 suitable for exploring
climate-change scenarios in future studies). PCO2 improves
on the well-established approach of the Ocean Carbon-Cycle
Model Intercomparison Project (OCMIP; Najjar et al., 1992)
by not constraining the functional form of the particle-flux-
divergence profile to be either a power law or an exponen-
tial. Instead, we explicitly model sinking biogenic particles
and let them react with the ambient oxygen in a simple
temperature-dependent model of microbial respiration (De-
Vries and Weber, 2017; Laufkötter et al., 2017) to determine
the flux divergence and respiration rates mechanistically.

We focus on a decadal-mean circulation derived from
the ACCESS1.3 climate model (Chamberlain et al., 2019;
Holzer et al., 2020) for the 1990s. To assess PCO2’s bio-
geochemistry and biological pump when embedded and op-
timized in this climate-model circulation, we compare with
PCO2 embedded and optimized in a data-assimilated ocean
circulation (OCIM2; DeVries and Holzer, 2019). OCIM2 has
been optimized so that its transport produces tracer fields that
are as close as possible to observations. Thus, OCIM2 pro-
vides a realistic reference circulation with minimal biases. To
explore the effect of optimized biogeochemical parameters
on the response to biogeochemical perturbations, we con-
sider idealized perturbations in which biological production
in the Southern Ocean is intensified to cause a nearly com-
plete nutrient drawdown. Similar perturbations have been
used previously to quantify the Southern Ocean’s key role
in supplying the rest of the ocean with preformed nutrients
(e.g., Sarmiento et al., 2004; Marinov et al., 2006; Holzer
and Primeau, 2013) and to illustrate Southern Ocean nutri-
ent trapping (Primeau et al., 2013). Here, we establish how
the response to Southern Ocean nutrient drawdown differs
depending on whether biogeochemistry is optimized for the
OCIM2 or ACCESS circulations.

We find that the biogeochemical model can be optimized
to fit the observed phosphate, dissolved inorganic carbon,
oxygen, and total alkalinity distributions with reasonable fi-
delity for both data-assimilated and climate-model-derived
circulations. However, the biological pump operates very dif-
ferently for the OCIM2 and ACCESS-M circulations, largely
because of differences in the sequestration time of regener-
ated organic matter. The differences in the biological pump
in turn produce significant differences in the response of the
system to imposed Southern Ocean nutrient drawdown.

2 Methods

2.1 Biogeochemical model

We model the ocean’s coupled phosphorus, carbon, and
oxygen cycles using mechanistic representations of nutri-
ent uptake, particle transport, and respiration. Depending on
whether oxygen is prescribed by observations or explicitly
modeled, we refer to the model as the PC or PCO2 model,
respectively.

Biological production is approximated as requiring only
phosphate as a nutrient, and the production of organic car-
bon is keyed to phosphate uptake. For simplicity, dissolved
organic phosphorus (DOP) is deemed to be not bioavailable,
although it has been shown to be utilized in oligotrophic re-
gions (Letscher et al., 2016). Nitrate, silicic acid, and iron
limitations are not explicitly modeled either, but we do pa-
rameterize the effect of denitrification on respiration as de-
scribed below. We justify our approximations a posteriori by
the fidelity of the modeled tracers to observations.
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We model four distinct phosphorus pools: dissolved in-
organic phosphorus (DIP, which is phosphate, PO4), semi-
labile DOP, and fast and slowly sinking particulate organic
phosphorus (POPf and POPs). The steady-state model equa-
tions for these tracers are

T [DIP] = −UP+RDOP+RPOP+ J
geo
DIP

T [DOP] = σ UP−RDOP+DPOP

Sf [POPf]= σf (1− σ)UP−RPOPf −DPOPf

Ss [POPs]= (1− σf) (1− σ)UP−RPOPs −DPOPs , (1)

with transport terms (circulation or gravitational settling)
on the left and sources and sinks on the right. Specifi-
cally, T [X] = ∇ · (u [X])−∇ · (K∇[X]) is the flux diver-
gence of dissolved tracerX due to advection (velocity u) and
eddy diffusion (diffusivity tensor K). Similarly, Sk [POPk] =
∂z(wk [POPk]) is the flux divergence of POPk sinking with
speed wk (where k = f or k = s). Note that here particles
are only subjected to gravitational sinking; including their
advective–diffusive transport does not significantly change
the solutions but greatly increases computational cost. A
fraction σ of the phosphorus uptakeUP is allocated to DOP, a
fraction σf (1− σ) is allocated to POPf, and the remainder is
allocated to POPs, all of which are remineralized back into
the DIP pool (through RDOP and RPOP = RPOPf +RPOPs ).
The global phosphate inventory is constant in our model and
prescribed by weakly restoring DIP to the observed global
mean [DIP] = 2.17 µM via J geo

DIP = ([DIP]−[DIP])/τgeo with
“geological” timescale τgeo = 1Myr. Without prescribing
the total amount of phosphate in this way there would be
no unique solution to steady-state Eq. (1). (This contrasts
with time-stepped models where, in the absence of external
sources and sinks, the total amount of phosphate is set by
the initial conditions.) Remineralization of organic phospho-
rus and respiration of organic carbon are modeled as having
the same specific (i.e., per molecule) rates so that remineral-
ization preserves the C : P ratio of organic-matter production
(discussed below). We now briefly describe how the rem-
ineralization and respiration rates are modeled; details of the
phosphorus uptake rate per unit volume UP are provided in
Appendix A1.

The remineralization of particulate organic matter (POM;
either POP or particulate organic carbon, POC) is known to
have relatively simple dependencies on oxygen and temper-
ature that are parameterized following previous work (e.g.,
Laufkötter et al., 2017; DeVries and Weber, 2017; Dinauer
et al., 2022):

RPOMk
= γk q

T−Tref
10 K

10
max

(
[O2] ,

[
Olim

2
])

max
(
[O2] ,

[
Olim

2
])
+KO2

[POMk] , (2)

where Tref = 20 ◦C and [Olim
2 ] = 5µM defines the oxygen

limit below which water is deemed anoxic. Note that Eq. (2)
differs from previous parameterizations in that we include
the effect of microbes switching to nitrate for organic-matter

oxidization (denitrification) by explicitly disallowing respi-
ration rates to decline in anoxic waters through the max func-
tion in Eq. (2). This means that respiration continues when
[O2] falls below [Olim

2 ] at the same per molecule rate as
would occur if [O2] was equal to [Olim

2 ] but without utiliz-
ing oxygen (note that [O2] can fall below [Olim

2 ] in spite of
this being explicitly disallowed in the oxygen tracer Eq. (5)
discussed below because we smooth step functions for differ-
entiability as described in Appendix B3). To limit unrealistic
POM accumulation in the bottom grid boxes under anoxic
conditions, a small fraction of POM is dissolved into dis-
solved organic matter (DOM) at rate DPOM = [POM]/τPOM
with τPOM = 1 year. Remineralization of dissolved organic
matter (DOM; either DOP or dissolved organic carbon,
DOC) is simply approximated as RDOM = [DOM]/τDOM
with a globally uniform timescale τDOM = 2 years.

The steady-state model equations for dissolved inorganic
carbon (DIC), DOC, fast and slow POC (POCf and POCs),
and particulate inorganic carbon (PIC, which is CaCO3) are

T [DIC] = −(1+ rPIC (1− σ)) UC+RDOC

+RPOC+DPIC+ J
atm
DIC

T [DOC] = σ UC−RDOC+DPOC

Sf [POCf]= σf (1− σ)UC−RPOCf−DPOCf

Ss [POCs]= (1− σf) (1− σ)UC−RPOCs−DPOCs

SPIC [PIC] = rPIC (1− σ)UC−DPIC, (3)

where SPIC [PIC] = ∂z(wPIC [PIC]) is the flux divergence of
PIC sinking with speed wPIC. The uptake rate of carbon per
unit volume UC = rC :PUP is keyed to phosphate uptake UP
using the stoichiometric C : P ratio rC :P, parameterized here
in terms of [DIP] (Galbraith and Martiny, 2015, see also Ap-
pendix A2). Uptake of DIC results in the production of DOC,
POCf, and POCs in the same proportions as the correspond-
ing phosphorus tracers (determined by σ and σf; see Eq. 1).
For OCIM2, we account for the effect of precipitation and
evaporation on DIC with “virtual fluxes” (Murnane et al.,
1999) as described in the OCMIP protocol (Najjar and Orr,
1999). The ACCESS-M matrix captures the flux divergence
due to water exchange with the atmosphere directly. The car-
bonate pump is keyed to the soft-tissue pump via the rain ra-
tio rPIC = PIC : POC, and PIC dissolution is parameterized
as DPIC = [PIC]/τPIC with τPIC = 1d.

In Eq. (3), J atm
DIC is the DIC source–sink term due to air–sea

CO2 exchange, parameterized in terms of surface winds and
sea-ice fractions using the formulation of Wanninkhof (1992)
with prescribed preindustrial atmospheric pCO2 = 278µatm
(we optimize our model for preindustrial conditions, as-
suming negligible changes in circulation since preindustrial
times). For OCIM2, we use the National Centers for Envi-
ronmental Prediction (NCEP) reanalysis for the ice fraction
and 6-hourly surface winds, while for ACCESS-M we use
the corresponding quantities as simulated by the ACCESS
climate model. From these fields, 6-hourly gas-exchange co-
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efficients for CO2 and O2 are computed (to capture gustiness)
and time averaged to form an annual mean climatology. The
effective partial pressure of CO2 in seawater needed for air–
sea CO2 exchange is calculated from the equilibrium carbon-
ate chemistry using the MATLAB CO2SYS function (Lewis
and Wallace, 1998; van Heuven et al., 2011).

The sinking speeds of the biogenic particles (ws and wf
for POM and wPIC for PIC) are constructed from globally
uniform reference sinking speeds (w∗s ,w∗f , andw∗PIC) that are
multiplied with a dimensionless in situ viscosity factor αµ
to account for slower terminal velocities in colder (and to a
lesser degree in more saline) waters. αµ depends on seawater
viscosity and on the density difference between POM and
ambient seawater (Taucher et al., 2014, Appendix A3).

The concentration of modeled total alkalinity (TA) obeys
(Murnane et al., 1999)

T [TA] = 2 (DPIC− rPIC (1− σ)UC)

− 21.8
(
RDOP+RPOPf +RPOPs −UP

)
+ J

geo
TA . (4)

The first term represents sources and sinks of TA due to
the cycling of carbonate, and the second term contains the
contributions from nitrate, phosphate, and sulfate (for further
details see Wolf-Gladrow et al., 2007). We approximate the
TA inventory as being constant and hence set the global mean
[TA] to 2420µM via the J geo

TA term, analogous to what we do
for phosphate. For OCIM2, virtual fluxes are again used to
account for concentration or dilution of TA by evaporation
and precipitation.

The concentration of dissolved oxygen [O2] is set by
air–sea gas exchange, organic-matter respiration, and phyto-
plankton photosynthesis. In steady state, modeled [O2] obeys

T [O2]= rO2 :C

[
UC−

(
RDOC+RPOCf +RPOCs

)
2
(

[O2]−
[
Olim

2

] )]
+ J atm

O2
, (5)

where rO2 :C is the O2 : C stoichiometric ratio of organic mat-
ter approximated as globally uniform. The Heaviside (step)
function2 switches oxygen consumption off when [O2] falls
below [Olim

2 ] = 5µM, consistent with the parameterization of
anaerobic POM respiration in Eq. (2). The air–sea exchange
rate J atm

O2
for oxygen is parameterized similarly to that for

CO2 (Wanninkhof, 1992) using the coefficients for oxygen
solubility and Schmidt number as tabulated by Wanninkhof
(2014).

2.2 Steady-state ocean circulation models

The nonlinear coupled partial differential Eqs. (1), (3), (4),
and (5) are discretized on the model grid, and the three-
dimensional tracer fields are organized into column vectors.
Linear operators such as T and S then become sparse matri-
ces, usually referred to as transport matrices, especially when

referring to advection–diffusion. The discretized steady-state
equations are coupled nonlinear algebraic equations that are
solved using Newton’s method, requiring order 10 iterations
(Appendix B).

2.2.1 OCIM2

The Ocean Circulation Inverse Model version 2 (OCIM2;
DeVries, 2014; DeVries and Holzer, 2019) provides a data-
assimilated advection–eddy-diffusion transport matrix. The
OCIM2 data assimilation uses the ventilation tracers CFC-
11, CFC-12, radiocarbon, and 3He, in addition to sea-level
height and air–sea heat and fresh-water fluxes. OCIM2 has
a horizontal resolution of 2◦× 2◦ and 24 depth levels, with
layer thicknesses that increase from 36 m at the surface to
634 m for the deepest layer. The OCIM2 transport operator is
anN×N sparse matrix withN ≈ 2×105 and 3×106 nonzero
elements. OCIM2 arguably provides the most realistic esti-
mate of the ocean’s climatological steady-state transport and
is thus a natural reference against which to assess biases in
climate-model-derived transport for the current state of the
ocean. For detailed analyses of the OCIM2 circulation, in-
cluding ideal mean age (mean time since surface contact) and
mean re-exposure time (mean time until next surface con-
tact), see the work by DeVries and Holzer (2019).

2.2.2 ACCESS-M

As a climate-model-based estimate of the ocean’s advection–
diffusion operator, we use a slightly modified version of
the “preferred” ACCESS1.3 transport matrix of Chamberlain
et al. (2019). This matrix was built from the decadal-mean
volume fluxes (resolved plus parameterized) for the 1990s
from the ACCESS1.3 “historical” runs (Bi et al., 2013a),
with nominal 1◦× 1◦ horizontal resolution (finer in latitude
near the Equator) and 50 depth levels with layer thicknesses
that increase from 10 m at the surface to 335 m for the deep-
est layer. For detailed analyses of the circulation captured by
the ACCESS1.3 transport matrix, including ideal mean age
and mean re-exposure time, see the work by Chamberlain
et al. (2019) and Holzer et al. (2020). This ACCESS1.3 ma-
trix has a size of N ×N with N ≈ 2.7× 106 and 1.8× 107

nonzero entries, which is an order of magnitude larger than
the OCIM2 matrix.

The tripolar grid of ACCESS1.3 results in a more complex
sparsity pattern that slows the factorization of the Jacobian
in Newton’s method (Appendix B1). We therefore coarse-
grain the ACCESS1.3 matrix by lumping together 2×2 near-
est horizontal neighbors (similar to the “lump-and-spray” ap-
proach of Bardin et al. (2014)), which results in about 16×
faster factorization. This coarse-graining reduces the max-
imum ideal mean age in the Pacific, but we compensate
by reducing the interior background diffusivity from 0.3 to
0.1 cm2 s−1 to match OCIM2 and to retain the original ideal
mean age. We refer to the resulting matrix/circulation model
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as ACCESS-M, which is of size N ×N with N ≈ 7× 105

and 5× 106 nonzero entries. We emphasize that high reso-
lution is not important for transport matrices built from the
output of an ocean model because the model’s volume fluxes
already contain the mean effects of processes resolved (and
parameterized) at a higher resolution in the parent circulation
model.

The most important difference between ACCESS-M and
OCIM2 for simulating biogeochemistry stems from differ-
ences in how the mixed layer is modeled. Both matrix mod-
els use mean annual maximum mixed-layer depth (MLD).
However, while OCIM2 specifies MLD from observational
analyses (de Boyer Montégut et al., 2004), ACCESS-M uses
the MLD of the parent ocean model. Overall, the ACCESS-
M MLD is deeper than observed (roughly 1.5–3 times in the
subtropical gyres) and has important unrealistic features. In
the Weddell and Ross seas, the ACCESS-M MLD reaches
all the way to the sea floor, and the deep winter mixed lay-
ers of the North Atlantic and Nordic seas occupy a much
larger area than observed (Appendix C). The deep Southern
Ocean mixed layers are due to unrealistic open-ocean con-
vection (Bi et al., 2013a; Heuzé et al., 2013) and are a key
ACCESS-M feature that imprints on the biological pump and
affects its responses to perturbations (see below). Further-
more, ACCESS-M is simply built from time-averaged model
volume fluxes, while OCIM2 has a steady transport that is
optimized to yield propagated tracer concentrations that are
as close as possible to observations. ACCESS-M therefore
inherits documented circulation and thermodynamic biases
from the parent ocean model (Marsland et al., 2013; Bi et al.,
2013b, 2020).

2.3 Parameter optimization and tracer data

We optimize the PC and PCO2 model parameters by min-
imizing an objective (“cost”) function that measures the
quadratic mismatch with observed DIP, DIC, O2, and TA
concentrations and penalizes deviations from a plausible
range of values for each parameter. Details on the objec-
tive function and optimization procedure are provided in Ap-
pendix B4.

For DIP observations we use gridded annual mean phos-
phate from the World Ocean Atlas 2018 (Garcia et al., 2019).
Gridded O2, DIC, and TA observations are taken from the
Global Data Analysis Project (Key et al., 2015; Lauvset et al.,
2016, GLODAP v2;). We optimize our models for prein-
dustrial conditions, assumed to be reasonably well repre-
sented by the OCIM2 and ACCESS-M circulations and by
the observational DIP, TA, and O2 climatologies. For DIC,
we subtract an estimate of anthropogenic DIC as propagated
from the reconstructed atmospheric CO2 time history since
1720 using the data-assimilated OCIM2 as done by Holzer
et al. (2021b). Observed tracer concentrations are interpo-
lated onto the grid of each circulation model, and grid cells
without observations are ignored in the objective function.

3 Results

We now focus on the optimized steady state of the PCO2
model and how it differs depending on whether PCO2 is em-
bedded in the OCIM2 or ACCESS-M circulation. To exam-
ine the sensitivity of optimized model parameters to model
complexity, we will also consider the PC model, for which
O2 concentrations are prescribed by observations.

3.1 Fidelity to observed fields

To quantify how well the optimized PCO2 model
matches observations, we first examine the volume-
weighted modeled–observed joint probability density func-
tions (PDFs), which are essentially binned model-versus-
observation scatter plots. These are shown in Fig. 1a–h to-
gether with globally averaged depth profiles (Fig. 1j–l) for
DIP, O2, DIC, and TA as obtained with either the OCIM2
or ACCESS-M circulations. Overall, there is good agree-
ment (tight clustering of the PDFs around the 1 : 1 line) with
volume-weighted root-mean-square errors (RMSEs) that are
around 20 %–30 % of the observed standard deviation for
OCIM2 and around 40 %–50 % for ACCESS-M.

The optimized OCIM2-embedded PCO2 model compares
well to other objectively optimized models of the P, C, and
O2 cycles (e.g., Primeau et al., 2013; Pasquier and Holzer,
2016; Holzer, 2022) as quantified by similar RMSEs (PDF
panels of Fig. 1). However, unlike these other models, PCO2
has interactive oxygen providing mechanistic respiration and
remineralization. Dissolved oxygen, with its large dynamic
range from near zero to about 300 µM, is the tracer that has
the largest mismatch with observations at an RMSE of 34 %
of the spatial standard deviation from the global mean. The
global mean vertical [O2] profile matches the observations
above 1000 m but progressively overestimates deeper con-
centrations, reaching a high bias of about 15 µM at 4000 m
(Fig. 1j).

The optimized ACCESS-M-embedded PCO2 model per-
forms worse for every tracer, with RMSEs that are larger
by a factor of 1.4–2.4 (Fig. 1e–h). In contrast to the OCIM2
PCO2 model, the ACCESS-M PCO2 model underestimates
oxygen at low concentrations. This could in part be due to
ACCESS-M’s finer low-latitude resolution, which may al-
low for more rapid nutrient supply, POM production, and in
turn higher oxygen utilization rates. Despite the large local
mismatches visible in the joint PDFs, the horizontally aver-
aged ACCESS-M PCO2 tracer profiles fit the observations
reasonably well (Fig. 1i–l), with the exception of [O2] be-
tween 400 m to 1500 m depth where underestimates by up to
30 µM (the largest profile mismatch across models and trac-
ers) indicate that ACCESS-M PCO2 has under oxygenated
intermediate waters.

The basin zonal means of Figs. 2 and 3 show striking dif-
ferences between the OCIM2 and ACCESS-M PCO2 oxy-
gen and DIC fields. In the Southern Ocean, ACCESS-M
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Figure 1. (a–h) Joint probability density functions (PDFs) of the modeled and observed concentrations for DIP, O2, DIC, and TA as optimized
for the PCO2 model embedded in the OCIM2 (a–d) and ACCESS-M (e–h) circulations. The darker the colors the denser the PDF such that
n% of the data lie outside of the nth percentile contour. The volume-weighted root-mean-square error (RMSE) is indicated in each panel
along with its ratio (%) to the spatial mean and standard deviation (SD) of the observations. (i–l) Corresponding simulated and observed
global-mean vertical profiles (because of interpolation, the observed profiles depend slightly on the grid used).

PCO2 strongly overestimates [O2] (by up to 80 µM) in the
same region where ACCESS-M has unrealistic deep mix-
ing (Fig. C1). This overestimate turns out to not be due to
increased preformed oxygen (Fig. S3), which is similar for
OCIM2 and ACCESS-M. Instead, the unrealistically deep
vertical mixing dramatically reduces O2 residence times for
ACCESS-M such that total oxygen is closer to preformed
oxygen in the Southern Ocean than is the case for OCIM2.
This occurs despite the larger ACCESS-M respiration-rate
coefficients (γs and γf) and lower q10 (Table 1), presumably
because of the relatively low organic-matter production in the

polar Southern Ocean (Fig. 4 below). In the mid- and low-
latitude Atlantic, the OCIM2 PCO2 generally overestimates
oxygen especially in the oxygen minimum zones (OMZs),
while ACCESS-M PCO2 underestimates oxygen, especially
in the thermocline (by up to 80 µM). The underestimates of
ACCESS-M PCO2 are consistent with its generally strength-
ened export production (discussed with Fig. 4 below), pro-
ducing more organic matter and hence having higher oxy-
gen demand than OCIM2 PCO2. We find that ACCESS-M
mode and intermediate waters have a weaker preformed oxy-
gen supply (by an order of 40 µM, Supplement Fig. S3),
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which also contributes to the large underestimates. In the
Pacific, both OCIM2 and ACCESS-M generally underesti-
mate O2 in low latitudes and overestimate it elsewhere, but
the underestimate for ACCESS-M is roughly twice that for
OCIM2, again consistent with increased oxygen demand and
under-ventilated mode and intermediate waters. In the Indian
Ocean, the mismatches are similar in pattern but of larger
amplitude for ACCESS-M PCO2.

The zonal-mean [O2] and [DIC]mismatches in Figs. 2 and
3 approximately mirror each other, with a Pearson correla-
tion coefficient of about −0.6. To the extent that O2 and DIC
have realistic air–sea exchange, this anticorrelation is con-
sistent with higher oxygen corresponding to reduced oxygen
utilization and hence reduced DIC production. The details
of the mismatch with observations are also influenced by er-
rors in air–sea exchange, but the prominent mirroring of the
O2 and DIC mismatches suggests that errors in oxygen uti-
lization are the dominant driver. Regionally in the North Pa-
cific, the overall anticorrelation does not hold for ACCESS-
M, suggesting that other factors play a role there.

When O2 is prescribed from observations (PC model)
rather than explicitly modeled, the mismatch improves for
most tracers, despite oxygen not being self consistent.
Specifically, we find that, relative to PCO2, the RMSEs of
the PC model for DIP and DIC improve by 15 % and 3.1 %
for OCIM2 and by 1.1 % and 5.8 % for ACCESS-M. For TA,
the mismatch improves by 1.8 % for ACCESS-M but slightly
degrades by 0.5 % for OCIM2.

3.2 Parameter sensitivity to circulation and model
complexity

How sensitive are the values of the optimized biogeochem-
ical parameters to whether we use the OCIM2 or ACCESS-
M circulation, and how much do they depend on whether
we prescribe the oxygen concentration from observations or
model [O2] self consistently? Recently, Kriest et al. (2020)
showed that different circulations generally require different
parameter values to best match observations. While Kriest
et al. (2020) demonstrated this in the context of the Model of
Oceanic Pelagic Stoichiometry (MOPS; Kriest and Oschlies,
2015) for five circulations, here we address the question for
two other circulations (OCIM2 and ACCESS) using an en-
tirely different model of biogeochemistry (PCO2). In addi-
tion, we investigate how sensitive optimized parameter val-
ues are to model complexity in the sense of whether oxygen
is prescribed (PC) or modeled (PCO2). The optimized val-
ues of the PC and PCO2 parameters for both the OCIM2 and
ACCESS-M cases are collected in Table 1.

The maximal phytoplankton concentration pmax and half-
saturation constant KDIP control nutrient uptake and are thus
key for each modeled tracer. While pmax shows sensitiv-
ity to both circulation and complexity, it is more sensitive
to circulation as quantified by the mean relative standard
deviations of 1circ(pmax)= 62% and 1bgc(pmax)= 35%.

(See Appendix E for definitions of 1bgc and 1circ.) By con-
trast, KDIP is less sensitive to both circulation and complex-
ity, lying in a range of 2.0–3.1 µM across models.

The carbonate pump is controlled by the rain ratio rPIC,
the fraction 1− σDOM of production allocated to POM,
the sinking-speed parameter w∗PIC, and the PIC dissolu-
tion timescale τPIC. These parameters are sensitive to cir-
culation with the OCIM2-embedded PCO2 exporting more
PIC to greater depth: for OCIM2, rPIC (1− σDOM)= 2.3%
and wPIC/τPIC = 3500m, while for ACCESS-M, rPIC (1−
σDOM)= 0.77% and wPIC/τPIC = 2100m. The rain ratio is
the most sensitive, with 1circ(rPIC)= 87%.

Key to the strength of the biological pump are DOM and
POM exports, which are controlled by a number of opti-
mized parameters: the fraction σDOM of production allocated
to DOM, the fraction σf of POP allocated to fast-sinking par-
ticles, and the POC respiration-rate amplitudes γf and γs,
which are themselves dependent on temperature and oxygen
via q10, KO2 , Tref, and [Olim

2 ]. Each of these parameters is
strongly dependent on circulation, with1circ ranging roughly
from 35 % to 110 % (notably γf and γs have 1circ ≥ 80%).
These large sensitivities, despite identical observational con-
straints, show that the biological pump operates differently
in the OCIM2 and ACCESS-M circulations.

Given that parameters can be expected to be least biased
when optimized for the data-assimilated OCIM2 circulation,
how well does ACCESS-M PCO2 match observations when
solved with OCIM2-optimized parameters? With optimized
OCIM2 parameters the fidelity of the ACCESS-M tracers to
observations is strongly degraded. Oxygen is most affected
(RMSE doubles to 64 µM) and particularly unrealistic in the
Pacific where the tropical upper ocean and the old waters
of the deep Pacific are strongly deoxygenated (Supplement
Figs. S4–S6). Near the tropical surface this occurs because an
increased fraction of production, which is largely unaffected,
is routed to DOC (the OCIM2-optimized σ is more than
twice the ACCESS-M-optimized σ ). POM respiration, how-
ever, is shifted to a greater depth because the respiration am-
plitudes (γf and γs) are reduced relative to their ACCESS-M-
optimized values, which allows POM to sink deeper (greater
transfer efficiency). As a result of deeper POM respiration
(relative to the optimized state), oxygen is stripped out of
Antarctic bottom water (AABW), which greatly expands the
volume of hypoxic waters in the Pacific. For DIP, DIC, and
TA, we find RMSEs of 0.32, 54, and 36 µM, respectively,
which is 30 %–60 % worse than the ACCESS-M-optimized
fit. While non-optimal parameters by definition degrade the
fit to observations, these large increases in mismatch with
observations underline the central role of circulation biases.

3.3 Biological pump

Can the optimized PCO2 model robustly predict the patterns
and strength of the ocean’s biological pump regardless of
whether we use the OCIM2 or ACCESS-M estimates of the

https://doi.org/10.5194/bg-20-2985-2023 Biogeosciences, 20, 2985–3009, 2023



2992 B. Pasquier et al.: Optimal parameters for the ocean’s nutrient, carbon, and oxygen cycles

Figure 2. (a–c) Basin zonal means of [O2] from PCO2 embedded in OCIM2 for the Atlantic (a, left), Pacific (b, center), and Indian Ocean
(c, right). (d–f) Model-observation difference. (g–l) As (a)–(f) but for ACCESS-M. Light gray indicates missing observations (see main text
for details). For all zonal means shown in this work, the Atlantic basin excludes the Gulf of Mexico and the Caribbean, and the Pacific basin
excludes the Sea of Japan so that the averages are more cleanly interpretable.

current ocean state? To address this question, we consider a
number of simple metrics of the biological pump and contrast
the OCIM2 and ACCESS-M cases.

3.3.1 POC flux and export production

A commonly used metric of the biological carbon pump is
the POC flux through a given depth horizon. Although the
POC flux through the base of the euphotic zone is arguably
more robust (Buesseler and Boyd, 2009), here we simply
consider the POC flux through 100 m depth and then con-
sider export production (referenced to the base of the eu-
photic zone), which is a more robust comprehensive metric
of export.

Figure 4 shows maps and global zonal integrals of the
100 m POC flux. The geographic patterns of the OCIM2 and
ACCESS-M 100 m POC fluxes are broadly similar, but the
globally integrated flux of 22 PgCyr−1 for ACCESS-M is 3

times larger than the 7.4 PgCyr−1 flux for OCIM2. Relative
to OCIM2, the ACCESS-M POC flux is too large in the sub-
tropical gyres, indicating too much production fueled by ex-
cessive phosphate supply. The ACCESS-M POC flux is also
larger in the subpolar oceans, particularly in the Pacific and
Indian sectors of the Southern Ocean and in the North At-
lantic along the Gulf Stream trajectory. These differences are
likely due to the ACCESS-M model’s deeper mixed layers
(Fig. C1).

Because carbon can be exported in both particulate and
dissolved form, a more comprehensive measure of export
is the export production, that is, the rate of organic-matter
production in a given euphotic water column that results
in respired DIC anywhere in the aphotic ocean (Primeau
et al., 2013, Appendix D). Figure 4 also shows maps and
global zonal integrals of export production. Globally inte-
grated export production, which includes export of DOM,
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Figure 3. As Fig. 2 but for [DIC].

is 16 PgCyr−1 for OCIM2 and 36 PgCyr−1 for ACCESS-
M, considerably larger than the 100 m POC fluxes. The ge-
ographic pattern of export production is generally similar to
that of the 100 m POC flux, but for OCIM2 subpolar export
is much larger than low-latitude export in terms of export
production than in terms of the 100 m POC flux.

3.3.2 Pump strength and regeneration pathways

A simple metric of the strength of the biological pump is the
fraction of the global phosphate inventory that is regenerated,
EP ≡ 〈[DIPreg]〉/〈[DIP]〉, where the angle brackets denote a
global volume-weighted integral. We define DIPreg here as
DIP that was remineralized in the aphotic ocean and has not
been in contact with the euphotic zone since (Appendix D2).
By contrast, preformed DIP is transported out of the eu-
photic zone without passing through the biological pump.
EP was introduced (as P ∗) by Ito and Follows (2005) as a
metric of pump efficiency, but regional variations of C : P in
POM complicate this interpretation prompting alternate di-

rectly carbon-based metrics of pump efficiency (e.g., Holzer
et al., 2021b). Remarkably, despite the biases of the AC-
CESS circulation, the OCIM2- and ACCESS-M-embedded
PCO2 have almost identical pump strengths of EP ≈ 44 %
and 43 %. These values are within the 39 %–50 % range of
previous inverse models (DeVries et al., 2012; Primeau et al.,
2013; Pasquier and Holzer, 2016; Holzer et al., 2021b) but
above the original 36 % estimate by Ito and Follows (2005),
which was based on apparent oxygen utilization (AOU).

Does the biological pump operate in the same way for
OCIM2 and ACCESS-M? Phosphate can be regenerated
through three mechanisms in our model: remineralization
of POPf, POPs, or DOP. Similarly, DIC can be regenerated
through the respiration of POCf, POCs, and DOC, and ad-
ditionally through the dissolution of PIC (carbonate pump).
To quantify the importance of each pathway, we partitioned
regenerated DIP and DIC using a Green function approach
(Appendix D2). The pie charts of Fig. 5 show that the domi-
nant contribution comes from biogenic particles, accounting
for roughly 73 %–78 % of regenerated DIP (and hence EP)
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Table 1. Biogeochemical model parameters. “Opt.” indicates if the parameter was optimized or not. 1bgc and 1circ are the sensitivities to
model complexity and circulation (Appendix E).

Symbol Description Opt. OCIM2 ACCESS-M Unit 1bgc 1circ

PC PCO2 PC PCO2 % %

pmax Maximum phytoplankton concentration Yes 5.27 12.8 20.0 23.4 µM 35 62
KDIP phosphate uptake half-saturation constant Yes 2.00 2.86 2.98 3.14 µM 14 17
rPIC PIC : POC rain ratio Yes 7.04 6.28 2.26 1.02 % 31 87
w∗PIC PIC reference sinking speed Yes 3970 3490 2010 2060 md−1 5.3 41
σ Fraction of total production routed to DOM Yes 66.1 63.9 47.8 24.2 % 24 43
σf Fraction of POM production routed to POMf Yes 16.3 13.7 31.7 10.3 % 42 33
γf POMf remineralization-rate amplitude Yes 0.136 0.156 0.999 1.05 d−1 6.5 110
γs POMs remineralization-rate amplitude Yes 0.131 0.165 0.560 0.535 d−1 9.7 81
q10 Base of remineralization temperature factor Yes 1.55 1.78 3.19 4.25 – 15 53
KO2 Respiration half-saturation constant Yes 7.22 7.43 6.14 3.01 µM 25 36
rO2 :C Uptake & respiration O2 : C stoichiometry Yes 1.41 1.49 1.40 1.31 molO2 molC−1 4.3 4.7
τU Phytoplankton growth timescale No 30 d
κT Growth & mortality e-folding inverse temperature No 0.063 K−1

KI Irradiance half-saturation constant No 10 Wm−2

τDOM DOM remineralization timescale No 2 year
τPOM POM dissolution timescale No 1 year
τPIC PIC dissolution timescale No 1 d
w∗f POMf Reference sinking speed No 100 md−1

w∗s POMs reference sinking speed No 10 md−1

Tref Reference temperature for the q10 term No 20 ◦C
[Olim

2 ] Oxygen threshold for denitrification No 5 µM

and 82 %–84 % of regenerated DIC for both circulations. For
regenerated DIC, PIC dissolution makes a sizable contribu-
tion of 25 % for OCIM2 and 23 % for ACCESS-M, consis-
tent with the very deep dissolution of PIC (exponential pro-
file with e-folding length of 3490 m for OCIM2 and 2060 m
for ACCESS-M).

To better understand how the biological pump sets the size
of the regenerated DIP and DIC pools, it is useful to think
about the bulk sequestration time of the regenerated pool
and the corresponding export rates. We therefore write the
regenerated inventory (for a given mechanism) as the prod-
uct of the corresponding globally integrated export produc-
tion and the corresponding bulk sequestration time (bulk se-
questration/residence time is simply defined here as the ratio
of inventory over rate and is thus equal to the regeneration-
weighted mean water re-exposure time). The bulk sequestra-
tion times and corresponding export productions for each re-
generation mechanism are plotted as boxes in Fig. 5, with the
height of the box being the sequestration time, the length be-
ing the export production, and the area being proportional to
the regenerated inventory. Despite similar POM-regenerated
pools, the export production rates from POM are roughly
3× larger for ACCESS-M than for OCIM2, compensating
for 3× shorter sequestration times (this is the case for all
POM types, whether it be POP or POC, slow or fast). For
ACCESS-M, strong export rates (wide boxes) are due to
rapid uptake (large pmax) and deep mixed layers, while short
sequestration times (short boxes) are due to rapid (large γs or

γf) and thus shallow respiration. This is a striking example
of how parameter optimization can change the inner work-
ings of the biological pump to compensate for transport bi-
ases. We hasten to add, however, that we do not use POM
measurements as a constraint on the model so that the rela-
tive contributions due to slow and fast POM are likely model
specific.

The smaller optimized PIC : POC ratio for ACCESS-M
(rPIC = 1.02 % compared to 6.28 % for OCIM2; Table 1)
compensates for ACCESS-M’s larger carbon export, result-
ing in ACCESS-M and OCIM2 having similar PIC exports
(0.82 and 0.73 PgCyr−1). We note that while the value of
rPIC = 1.02 % is optimal for ACCESS-M, it is unrealistically
small compared to other estimates that range from roughly
3 % to 12 % (Sarmiento et al., 2002; Jin et al., 2006; Kwon
et al., 2022). The sequestration times of the PIC-regenerated
DIC pools are also similar for the two circulations (670 years
for OCIM2, 540 years for ACCESS-M) despite widely dif-
ferent PIC sinking speeds (and thus dissolution depths given
the fixed dissolution timescale τPIC). This points to compen-
sation due to subtle differences in the regeneration-weighted
water re-exposure times. Overall, the carbonate pump con-
tributes about a quarter of the global regenerated DIC inven-
tory, regardless of circulation. The robustness of PIC export
and PIC-regenerated DIC sequestration times and inventories
across circulations is likely due to the alkalinity constraint,
which acts to adjust the PIC pump to match TA observations.
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Figure 4. Maps and global zonal integrals of the 100 m POC flux and the carbon export production out of the euphotic zone for PCO2
embedded in OCIM2 (a, b, c) and ACCESS-M (d, e, f). Global integrals are indicated on Asia.

Figure 5 shows that DOM remineralization makes a sub-
stantial contribution to the regenerated DIP and DIC invento-
ries. The sequestration times of DOM-regenerated DIC and
DIP are only a few decades, as expected given the short
2-year e-folding time for semilabile DOM in our model.
The sequestration time of DOM-regenerated DIP or DIC for
OCIM2 is ∼ 1.8× larger than for ACCESS-M, but its export
rate is ∼ 1.5× smaller, giving roughly comparable DOM-
regenerated DIC pools for both circulations. The larger DOC
export for ACCESS-M is consistent with its larger nutrient
and carbon uptake, in turn consistent with its deeper mixed
layer supplying more nutrients. We emphasize that DOP and
DOC are modeled very simply here with a single uniform
lifetime τDOM and that we did not use any DOM observa-
tional constraints (which would require multiple DOM trac-
ers with a spectrum of labilities). Thus, while our diagnos-
tics demonstrate that DOM can be an important contributor
to export production, the specific values of the DOM-driven
export obtained here should not be considered to be accurate
for the real ocean. With OCIM2, DOM accounts for roughly
50 % of the export production, while recent work places the
DOM contribution to carbon export at around 20 % (Letscher
et al., 2015).

3.3.3 POC transfer efficiency

The different ways in which OCIM2 and ACCESS-M PCO2
achieve optimum fits to the observations are also manifest
in the models’ particle dynamics, examined here in terms

of the POC transfer efficiency. The efficiency of POC trans-
fer from depth z1 to a deeper depth z2 is simply the ratio
8(z2)/8(z1), where 8(z) is the POC flux at depth z. The
transfer efficiency is a convenient and observable metric of
POC flux attenuation with depth. High transfer efficiency
corresponds to lower respiration rates and hence to particles
surviving to greater depth.

Figure 6 shows maps of the POC transfer efficiency from
the base of the euphotic zone (z1 = zeu) to 500 m deeper
(z2 = zeu+ 500m) together with [O2] averaged over the z1
to z2 water column. For OCIM2, the transfer efficiencies
of both slow and fast particles have patterns that have a
strong inverse correlation with the low oxygen concentra-
tions of the Pacific OMZs. At a given temperature, respi-
ration rates are modulated by the [O2] Michaelis–Menten
factor in Eq. (2), so that lower oxygen and respiration rates
result in higher transfer efficiency, as expected. The fast-
sinking POCf achieves a 500 m transfer efficiency of 0.75
in the global mean, with local values over 0.85 in the Pacific
OMZs. The slowly sinking POCs has more time to respire
over a given depth range and hence has a transfer efficiency
of only 0.08 in the global mean, reaching around 0.25 in
the Pacific OMZs. The transfer efficiencies are elevated by
around 0.05 in high latitudes because of lower respiration in
colder waters, as parameterized by the q10 term in Eq. (2).

We note in passing that the reduced respiration in cold
waters competes with increased seawater viscosity, which
slows sinking particles down (smaller viscosity factor; see
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Figure 5. (a) DIPreg contributions from POPf, POPs, and DOP (red, orange, blue) for the PCO2 model embedded in OCIM2 represented
as both a pie chart and a bar chart. Pump strength as a percentage is indicated above the pie chart. Each bar represents the regenerated DIP
inventories in terms of the corresponding export rate (width)× bulk re-exposure time (height). (b) As (a) but for ACCESS-M. (c–d) As
(a)–(b) but for DIC, including the additional contributions from PIC (gray).

Appendix A3). The slower sinking allows for respiration to
act over a longer period of time, compensating for the lower
respiration rates. Depending on the value of q10, this com-
pensation could in principle erase the temperature depen-
dence of respiration. However, for both models, parameters
optimize such that the compensation is only partial, with
the effect of reduced respiration dominating the effect of in-
creased viscosity. The compensation is stronger for OCIM2
PCO2, for which the viscosity effect is empirically equiva-
lent to dividing the temperature (in ◦C) by roughly a factor
of 2.4 in the q10 term, compared to a corresponding factor of
only about 1.3 for ACCESS-M PCO2.

The spatial patterns of the transfer efficiency for both
fast and slow POC are markedly different for OCIM2 and
ACCESS-M. The different patterns are a consequence of the
different optimal respiration parameters KO2 and q10. For
both slow and fast POC, the highest transfer efficiencies for
ACCESS-M occur in subpolar and polar waters because of
the much greater sensitivity to temperature (about twice as

large a value of q10 compounded with weaker viscosity com-
pensation). In terms of contributions to the regenerated DIC
inventory, we note that the deeper POC respiration in the
ACCESS-M Southern Ocean is compensated for in part by
the shorter re-exposure times of about 200 years (Holzer
et al., 2020) compared to up to 700 years for OCIM2 (De-
Vries and Holzer, 2019). For ACCESS-M, the temperature
dependence dominates the oxygen dependence, withKO2 be-
ing 2.5× smaller than for OCIM2. Compared to the OCIM2
PCO2 model, oxygen in ACCESS-M must therefore drop to
2.5× lower concentrations for the same reduction in respira-
tion, which is a bit more likely to occur because of ACCESS-
M’s lower OMZ oxygen concentrations (Figs. 1 and 2). As a
result, ACCESS-M transfer efficiencies still show enhance-
ment in the OMZs by about 0.3 for fast POC and only 0.03
for slow POC.
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Figure 6. The transfer efficiency of POCs (a, b) and POCf (c, d) sinking from the base of the euphotic zone at depth zeu to depth zeu+500m
together with the oxygen concentration averaged over the transferred depth range (e, f) for OCIM2 (a, c, e) and ACCESS-M (b, d, f).

3.4 Response to Southern Ocean nutrient drawdown

Given optimal parameters for both embedding circulations,
how robust is PCO2’s response to perturbations? Motivated
by previous studies that explored the importance of the iron-
limited Southern Ocean as a source of preformed nutrients to
the rest of the ocean (e.g., Sarmiento et al., 2004; Marinov
et al., 2006; Primeau et al., 2013; Holzer and Primeau, 2013;
Holzer et al., 2021b), we perturb the system by forcing nearly
complete nutrient utilization south of 30◦ S. This is accom-
plished by adding a DIP uptake rate of the form [DIP]/τ ∗

with τ ∗ = 0.1 d. In the following, we contrast the ensuing re-
sponses of the OCIM2- and ACCESS-M-embedded nutrient,
carbon, and oxygen cycles.

Our idealized perturbation increases carbon uptake south
of 30◦ S by 260 % for OCIM2 and by 360 % for ACCESS-
M. This achieves nearly complete nutrient utilization south of
30◦ S, which redistributes DIP (phosphate) globally because
the total amount of phosphate is conserved in our formula-
tion. Phosphate becomes “trapped” in the Southern Ocean
(Primeau et al., 2013), reducing nutrient concentrations north
of 30◦ S, where biological production is reduced by 25 % for
OCIM2 and by 30 % for ACCESS-M. The dramatic produc-
tion increase in the Southern Ocean cranks up the global bi-

ological pump strength EP to almost 90 % for both circula-
tions, similar to findings of Primeau et al. (2013).

To visualize the global redistribution of nutrients, Fig. 7
shows the basin zonal averages of the DIP response. For
OCIM2 PCO2, intense Southern Ocean nutrient trapping is
evident with [DIP] increases of up to 1 µM at depth. The de-
pletion of surface nutrients south of 30◦ S deprives Antarc-
tic Intermediate and Mode Waters (AAIW and AAMW) of
the preformed DIP that they supply in the unperturbed state
to the rest of the ocean (e.g., Sarmiento et al., 2004). The
abyssal branch of the overturning circulation (Holzer et al.,
2021a) extends elevated Southern Ocean DIP concentrations
into the abyssal Pacific and Indian oceans. In the Atlantic, the
nutrient trapping is more confined to high southern latitudes,
with North Atlantic Deep Water (NADW) still supplying up
to 0.5 µM of preformed DIP in the zonal mean (Supplement
Figs. S1 and S2).

For ACCESS-M, the Southern Ocean nutrient trapping is
less intense than for OCIM2. The contrast with OCIM2 is
particularly striking in the Atlantic sector, where increases
in DIP barely reach a quarter of the OCIM2 DIP response.
The reason for this contrast lies in ACCESS-M’s unrealisti-
cally deep mixed layers in the Weddell and Ross seas (Ap-
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Figure 7. Atlantic, Pacific, and Indian Ocean zonal-mean [DIP] responses to complete nutrient drawdown south of 30◦ S. (a–c) Perturbed
[DIP] for OCIM2 PCO2. (d–f) Corresponding difference between perturbed [DIP] and base (unperturbed) [DIP]. (g–l) As (a)–(f) but for
ACCESS-M PCO2.

pendix C), which are not present for OCIM2. The nutrient
trapping in OCIM2 occurs by POP being regenerated deep
in upwelling Circumpolar Deep Water (CDW), which re-
turns DIP with the surface Ekman divergence to regions of
high production where the POP flux to depth is maintained.
In ACCESS-M, this sinking-POP–upwelling-DIP trapping
loop is short circuited in the regions of unrealistic deep mix-
ing. In these regions, DIP regenerated at depth is quickly
mixed throughout the water column and utilized again in-
stead of being slowly returned to the surface by upwelling
CDW. Because DOP is not bioavailable in our model, phos-
phorus in the high-mixing regions is in effect siphoned out
of the deep-mixing regions as DOP, with little remaining as
DIP (outside the deep-mixing regions, regenerated DIP is
trapped by the same mechanism as for OCIM2). The zonal-
mean DIP depletion due to the short-circuit siphon is visible
in Fig. 8g and k south of 60◦ S in the Atlantic and Pacific,
with weaker depletion in the Pacific where deep mixing oc-

cupies a smaller fraction of the basin. The weaker Southern
Ocean nutrient trapping for ACCESS-M results in a corre-
spondingly weaker response north of 60◦ S: above 1000 m,
ACCESS-M has smaller decreases in preformed DIP carried
northwards by surface currents, AAMW, and AAIW, and at
depth ACCESS-M has smaller increases in regenerated DIP
extending northwards with the abyssal overturning of the Pa-
cific and Indian oceans (Figs. S1 and S2).

The DIC response shown in the basin zonal means of
Fig. 8 is the result of both Southern Ocean nutrient trap-
ping and changes in air–sea CO2 exchange. Similar to the
DIP response, DIC trapped in the Southern Ocean prop-
agates northwards at depth with AABW for both OCIM2
and ACCESS-M. The DIC response is generally larger than
would be expected from the DIP response using the C : P sto-
ichiometry of POM (which for zero DIP saturates at about
167 molCmolP−1; Galbraith and Martiny, 2015). The ex-
tra DIC is supplied by CO2 ingassing driven by the strong
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surface DIC drawdown, which changes the Southern Ocean
from net CO2 outgassing to net CO2 ingassing. The global
DIC inventory increases by roughly 7 % for both circulations.
For both OCIM2 and ACCESS-M, the Southern Ocean CO2
ingassing weakens the decrease of preformed DIC (due to in-
tensified uptake) that is propagated via AAMW and AAIW
such that the total DIC response is dominated by the response
of regenerated DIC. As for DIP, Southern Ocean DIC trap-
ping is more pronounced for OCIM2 than for ACCESS-M,
which is again a consequence of ACCESS-M’s unrealistic
deep mixing in the Weddell and Ross seas.

The zonal mean [O2] response quantified in Fig. 9 shows
less sensitivity to the choice of circulation. For both OCIM2
and ACCESS-M, intensified Southern Ocean production dra-
matically deoxygenates the ocean, driving [O2] in Southern-
Ocean-sourced water masses (SAMW, AAIW, AABW) to
near zero (the prominent oxygen plume that can be seen in
the deep south Indian Ocean (Fig. 9c and i) is fed by CDW
propagating eastward from the Atlantic). This deoxygenation
is driven by strongly increased respiration, which balances
the strongly increased Southern Ocean organic-matter pro-
duction. Strongly increased dissolved organic matter prop-
agates northward from the Southern Ocean with SAMW,
AAIW, and AABW, shaping the oxygen response seen in
Fig. 9. Increased photosynthetic oxygen production in the
Southern Ocean increases [O2] near the surface, most of
which is quickly lost to the atmosphere and thus not able
to meet the greater oxygen demand at depth. Outside of the
Southern Ocean, oxygen weakly increases near the surface
(by up to 50 µM) and in northern NADW consistent with de-
creased production north of 30◦ S and decreased respiration
in NADW, which also manifested in decreased DIC (Fig. 8d,
j).

Because the overall oxygen response is dominated by in-
creased respiration driving [O2] to near zero in much of the
ocean, the difference in the trapping mechanisms between
OCIM2 and ACCESS-M is not as pronounced in Fig. 9. For
both circulations, most of the deep Pacific, Indian Ocean,
and Southern Ocean become OMZs ([O2]< 20µM), as the
global ocean oxygen inventory is reduced by about 60 %.
Nevertheless, for ACCESS-M, stronger oxygen decreases
in the deep Southern Ocean, and weaker vertical gradients
south of 60◦ S still show the effect of the rapid deep mix-
ing in ACCESS-M. The more rapid vertical exchange with
the surface oxygen supply in the Ross and Weddell seas for
ACCESS-M prevent the Atlantic and Pacific south of 60◦ S
from being as strongly deoxygenated as in OCIM2.

It is worth noting that the response to Southern Ocean nu-
trient drawdown is completely dominated by the circulation.
Indeed, solving ACCESS-M PCO2 with OCIM2 optimal pa-
rameters results in responses that are nearly the same as those
shown in Figs. 7–9.

4 Discussion

This study was motivated by the challenges posed in using
ocean circulations from climate models to capture the work-
ings of the biological pump and its effect on the ocean’s oxy-
gen distribution. In particular, how do biases in a circulation
model for the current state of the ocean affect our ability to
match observations, and if model parameters are optimized
to match observations as well as possible, how do circulation
biases affect the response of the biological pump to pertur-
bations? The answers to these questions are important for
assessing predictions for the future biogeochemical state of
the ocean.

To address these issues, we built a model (PCO2) of the
coupled nutrient, carbon, and oxygen cycles. The mechanis-
tic nutrient and carbon uptake and the simpler treatment of
DOC that this affords are the key differences between PCO2
and the SIMPLE-TRIM model of DeVries and Weber (2017),
which otherwise share essentially the same formulation of
POM respiration. The fully interactive oxygen of PCO2 is
the key difference with OCMIP-style models (Najjar et al.,
2007) for which POM flux-divergence profiles are prescribed
and organic carbon passes through the semilabile DOC pool
before being respired (e.g., Holzer, 2022).

We modeled a minimal set of biogeochemical tracers
(PO4, POP, DOP, DIC, POC, DOP, PIC, O2, TA), in part be-
cause of the greater computational demands of the ACCESS-
M circulation even when coarse-grained to nominal 2◦× 2◦

horizontal resolution. In particular, we used only a single
semilabile pool of DOC, as opposed to separate labile, semil-
abile, and recalcitrant pools (e.g., DeVries and Weber, 2017;
Kwon et al., 2022). For this single DOC pool, remineraliza-
tion is modeled using a simple fixed 2-year e-folding time
because on the one hand we lack quantitative estimates of its
biological and photochemical degradation and on the other
hand the neglect of labile and refractory DOC pools justifies
a simpler representation of semilabile DOC. By the same to-
ken, for simplicity neither DOC nor DOP are bioavailable in
our model, although in the real ocean DOP provides phos-
phorus to P-limited phytoplankton in highly oligotrophic re-
gions (e.g., Letscher and Moore, 2015).

The absence of an explicit nitrogen cycle means that we
cannot make detailed statements about how denitrification
might be affected by circulation changes, but the basic effect
of organic-matter oxidization continuing in anoxic regions
is parameterized. We do not model dissolved iron either, but
PCO2 captures the large-scale patterns of production because
uptake parameters are optimized against observed nutrient
distributions, which are shaped by all the processes in the
real ocean. We justify these approximations a posteriori by
the high quality of the fit to the observations for the data-
assimilated OCIM2 circulation.

For most parameters the variation of the optimal value
with circulation is larger than the variation with model com-
plexity (meaning prescribed versus modeled oxygen here,
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Figure 8. Atlantic, Pacific, and Indian Ocean zonal-mean [DIC] responses to complete nutrient drawdown south of 30◦ S. (a–c) Perturbed
[DIC] for OCIM2 PCO2. (d–f) Corresponding difference between perturbed [DIC] and base (unperturbed) [DIC]. (g–l) As (a)–(f) but for
ACCESS-M PCO2.

i.e., PC vs. PCO2), underlining the all-important control of
transport on ocean biogeochemistry. Our findings also show
that caution is necessary when comparing parameter values
among models. Unless the circulation is free from biases and
the formulation of a given process can be justified from fun-
damental biology and chemistry, parameter optimization is
not the same as the estimation of fundamental parameters,
the value of which could in principle be measured directly.
Instead, optimized model parameters take on values that tend
to compensate for shortcomings of the circulation and bio-
geochemical formulation. This generally changes the inner
workings of the biological pump with export production and
transfer efficiency adjusting to the circulation model’s re-
exposure times. While only two model complexities have
been examined here (PC and PCO2), our main results should
apply to more complex biogeochemical models, although our
detailed quantitative findings are of course model specific.

Even when optimized with the data-assimilated OCIM2
circulation, significant biases in the biogeochemical tracers
remain, pointing to model deficiencies. Remarkably, for the
OCIM2 circulation, the remaining biases in the oxygen dis-
tribution are similar to those of a much simpler OCMIP-style
model of oxygen also embedded in OCIM2 (Holzer, 2022).
This points to potential issues with the OCIM2 circulation,
air–sea exchange, and/or the parameterization of the oxygen
dependence of microbial respiration. An important caveat
that must be kept in mind is that the covariance between bio-
logical production, air–sea exchange, and seasonally varying
circulation is not captured with our steady circulation mod-
els. In particular, the models specify the mixed-layer depth
to be the climatological annual maximum, which could over-
oxygenate high-latitude regions consistent with the OCIM2-
optimized state having too much oxygen in the mid-depth
subpolar North Pacific. Note that using a time-stepped for-
ward model would have the benefit of capturing seasonal
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Figure 9. Atlantic, Pacific, and Indian Ocean zonal-mean [O2] responses to complete nutrient drawdown south of 30◦ S. (a–c) Perturbed [O2]
for OCIM2 PCO2. (d–f) Corresponding difference between perturbed [O2] and base (unperturbed) [O2]. (g–l) As (a)–(f) but for ACCESS-M
PCO2.

and inter-annual variability but would otherwise likely lead
to qualitatively similar results at steeply increased computa-
tional cost.

Remaining model biases could potentially be reduced
by using additional observational constraints. For example,
POC observations (e.g., Dinauer et al., 2022) could be used
to better constrain particle dynamics, although these are cur-
rently only available for a very sparse set of stations. Also,
our results show that DOC transport is an important path-
way for carbon export, suggesting potential value from using
DOC observations as constraints. However, typically, total
DOC is measured, not just the semi-labile fraction, so that
modeling all DOC pools becomes necessary, which would
increase computational cost considerably. One could also
try to constrain nutrient uptake with satellite phytoplankton
measurements, but this would entail using different func-
tional classes (e.g., Pasquier and Holzer, 2017) and hence

again lead to greater model complexity, and the larger set of
parameters would make the optimization more costly.

The matrix formulation of PCO2 not only allowed for ef-
ficient steady-state solutions, and hence parameter optimiza-
tion, but also enabled us to diagnose the inner workings of
the biological pump. For example, partitioning regenerated
DIP according to which mechanisms produced it is generally
not computationally feasible for forward models (for forward
models, regenerated DIP is typically either approximately in-
ferred from apparent oxygen utilization (e.g., Ito and Fol-
lows, 2005) or computed as a residual from preformed DIP
(e.g., Marinov et al., 2008), neither of which allow further
partitioning according to remineralization mechanism). Here
we were able to calculate this partitioning efficiently for
steady state as detailed in Appendix D2. Similarly, export
production is computationally prohibitive for forward mod-
els but readily available in the matrix formulation using an
adjoint approach (Appendix D1).
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5 Conclusions

To explore the effects of climate-model circulation biases
on the global biological pump, we embedded a steady-state
model of the ocean’s nutrient, carbon, and oxygen cycles
(PCO2) in the ACCESS-model-derived decadal-mean ocean
circulation for the 1990s and contrasted the results with
PCO2 embedded in the data-assimilated OCIM2 circulation.
The differences between the OCIM2 and ACCESS cases in
optimized biogeochemical parameters and in their responses
to Southern Ocean nutrient drawdown lead us to the follow-
ing main conclusions.

With optimized parameters, the PCO2 model is able to
match the observed DIP, DIC, O2, and TA fields with reason-
able fidelity for both circulations, despite some strong biases
in the ACCESS circulation. However, the fit for the ACCESS
circulation is not as good as for OCIM2, with RMSEs that are
roughly 1.4–2.4 times larger. Neither circulation captures all
the features of the observed O2 distribution. In OMZs, the
oxygen concentration is overestimated for OCIM2 and un-
derestimated for ACCESS-M, which points to biases in both
models (possibly in both biogeochemistry and circulation)
that are not compensated by parameter optimization. Mod-
eling O2, as compared to prescribing it from observations,
increases the RMSEs for the other tracers regardless of the
circulation.

The parameter values optimized for the realistic data-
assimilated OCIM2 circulation are not optimal for the
ACCESS-M-embedded biogeochemistry. Optimal parame-
ter values vary by up to a factor of 7 between OCIM2 and
ACCESS-M, and using OCIM2 parameters for ACCESS-M
degrades the fit to observations by 30 %–60 %. This is in
agreement with the findings of Kriest et al. (2020) that “one
size does not fit all”. Circulation is a key control on biogeo-
chemistry, with optimal parameter values varying more with
circulation than with the complexity of the biogeochemistry
model (Matear and Holloway, 1995).

Despite fitting observed tracers reasonably well, the opti-
mized biological pump operates differently in the two circu-
lations. This manifests in the ACCESS-M export production
being roughly 2 times larger and its 100 m POC flux being 3
times larger than for OCMI2, which has a 16.4 PgCyr−1 ex-
port production and a 7.4 PgCyr−1 100 m POC flux. Despite
these large export differences, the biological pump strength
(quantified by the regenerated fraction of the phosphate in-
ventory) is robust at 43 %–44 % across embedding circu-
lations. About 30 %–50 % of the global production is ex-
ported as DOC, which contributes less than ∼ 20 % of the
regenerated DIC inventory for both OCIM2 and ACCESS-
M. The remaining 50 %–70 % of the carbon export is carried
by POC, with PIC contributing only a few percent.

Widely different exports with similar pump strengths are
reconciled by differences in sequestration times (DeVries
et al., 2012; Holzer et al., 2021b). We find that DOC- and
POC-regenerated DIC takes roughly 3 times as long to re-

turn to the euphotic zone for OCIM2 than for ACCESS-M so
that OCIM2 has a higher sequestration efficiency: a smaller
export rate acts over a longer time resulting in similarly sized
pools of respired carbon. For the carbonate pump (PIC), deep
dissolution leads to a sequestration time of roughly 600 years
and accounts for almost a quarter of the regenerated DIC in-
ventory for both circulations.

Differences in particle dynamics shape differences in the
biological pump. Globally, POC is respired deeper in OCIM2
compared to ACCESS-M, but regionally the largest differ-
ences in transfer efficiency occur in OMZs and at high lat-
itudes through the oxygen and temperature dependence of
respiration. For OCIM2, respiration is optimized to have a
weak temperature dependence but a strong oxygen depen-
dence, enhancing transfer efficiency primarily in OMZs. For
ACCESS-M, temperature dominates variations in respira-
tion, enhancing transfer efficiency mostly at high latitudes.
In the ACCESS-M Southern Ocean, deeper remineralization
is counteracted by much shorter deep re-exposure times (less
than 200 years compared to up to 700 years for OCIM2), re-
sulting in similar global pump strengths.

Despite PCO2 fitting observed tracers, the differences in
the biological pump drive differences in the response to
Southern Ocean nutrient drawdown. For OCIM2, strongly
stimulated Southern Ocean production leads to intense nutri-
ent trapping and increased carbon sequestration in the deep
oceans. For ACCESS-M, Southern Ocean nutrient trapping
is partially short circuited by rapid vertical mixing in the un-
realistically deep mixed layers of the Weddell and Ross seas,
where the intensified surface production siphons DIP out of
the entire water column. The DIC response is broadly sim-
ilar to the DIP response, but outside of the Southern Ocean
DIC is not as depleted, and there is enhanced DIC leakage
with mode/intermediate waters due to enhanced C : P stoi-
chiometric ratios and CO2 ingassing in the Southern Ocean.
Southern Ocean nutrient drawdown leads to nearly complete
deoxygenation of Southern-Ocean-sourced water masses: for
both circulations, strongly increased POC and DOC produc-
tion leads to sharply increased oxygen demand that cannot be
met by increased ocean photosynthesis. Because [O2] is al-
most driven to zero over much of the deep ocean, differences
in the [O2] responses between the two circulations are only
pronounced south of∼60◦ S, where the rapid deep mixing in
ACCESS-M provides better oxygenation.

Our findings show that optimizing biogeochemical param-
eters to match observed tracers does not guarantee a robust
representation of the biological pump. Biases in the circu-
lation influence how the biological pump operates and its re-
sponse to perturbations, even when parameters are optimized
to match biogeochemical tracer fields. It is thus imperative to
quantify the inner workings of the biological pump in ocean
models to assess the response of the carbon and oxygen cy-
cles to climate change. We hope that our work will lead to
future ocean models being assessed not just in terms of the
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fidelity of their physical variables but also in terms of key
biogeochemical metrics.

Appendix A: Biogeochemistry model details

A1 Biological phosphate uptake

Following Pasquier and Holzer (2017), phosphate uptake UP
is parameterized as a function of temperature, light, and nu-
trient availability:

UP ≡
pmax

τU
eκT T

(
I

I +KI

)2(
[DIP]

[DIP] +KDIP

)2

. (A1)

In Eq. (A1), T is the Celsius temperature and I is the pho-
tosynthetically available radiation (PAR). PAR is prescribed
throughout the water column from the ACCESS1.3 model
runs for both the ACCESS-M- and OCIM2-embedded PCO2
models (PAR is therefore not coupled to the plankton con-
centration, precluding any effects from self-shading). The
main difference with the work of Pasquier and Holzer (2017)
is that explicit iron and silicate limitation are not included
for simplicity. Phosphate uptake is modeled to have expo-
nential temperature dependence following Eppley (1972),
who tuned κT = 0.063K−1, which was later validated sta-
tistically (e.g., Bissinger et al., 2008). Light availability and
nutrient limitation are parameterized as Monod factors, the
square of which controls the strength of phosphate utiliza-
tion following the logistic phytoplankton growth model used
by Pasquier and Holzer (2017) and broadly inspired by Gal-
braith et al. (2010). The optimized parameter pmax represents
the phytoplankton concentration for nutrient and light replete
condition (unit Monod factors) and T = 0 ◦C, while τU is a
nominal uptake timescale set to 30 d. To avoid unrealistic nu-
trient trapping due to under-resolved circulation that occurs
in some marginal seas for our models, we zero out produc-
tion in the Sea of Japan, the Gulf of Mexico, and the Red
Sea.

A2 Uptake C : P stoichiometry

The C : P stoichiometry of biological production has been
shown to have strong regional deviations from the 106 : 1
Redfield value (e.g., Teng et al., 2014). Here we model the
C : P of biological production to be identical to the C : P ratio
of POM in the surface ocean, which is known to be strongly
correlated with surface [DIP]. Galbraith and Martiny (2015)
showed that the P : C of surface POM can be fit by the linear
[DIP] dependence

rP :C =m [DIP] + b, (A2)

with slope m= 6.9mmolmol−1 µM−1 and intercept b =
6.0mmolmol−1.

By constraining the parameters m and b of Eq. (A2) us-
ing an OCIM2-embedded inverse model of the carbon cycle,

including semi-labile and recalcitrant DOP and DOC pools
and a detailed representation of PIC and riverine carbon in-
puts, Kwon et al. (2022) recently provided an independent
verification that a linear P : C dependence on [DIP] provides
a good fit to observed tracers for values of m and b that are
consistent with the fits of Galbraith and Martiny (2015). Phy-
toplankton frugality in very nutrient-poor regions has been
hypothesized to be modeled better by a power-law depen-
dence of P : C on [DIP] (Tanioka and Matsumoto, 2017; Mat-
sumoto et al., 2020), but Kwon et al. (2022) show that their
inverse model is able to fit observations equally well regard-
less of whether a linear or power-law relationship is used. We
therefore use the simpler linear relationship of Eq. (A2) with
rC :P = 1/rP :C and the values of m and b from Galbraith and
Martiny (2015).

A3 Viscosity effect on sinking speeds

Here, we follow a similar approach to that of Taucher et al.
(2014) and define a viscosity factor αµ that multiplies a con-
stant reference sinking speed (w∗f , w∗s , or w∗PIC) to obtain the
local sinking speed (of POMf, POMs, or PIC). The factor αµ
is given in terms of temperature T and salinity S by

αµ(S,T )=
µ(S,0 ◦C)
µ(S,T )

ρp− ρsw(S,T )

ρp− ρsw(S,0 ◦C)
, (A3)

where the first term represents the effect of dynamic viscos-
ity µ, and the second term the effect of changing buoyancy
(ρp is the particle density and ρsw is seawater density). For
ρp we follow Taucher et al. (2014) and set it to a constant
value of ρp = 1060kgm−3, representing an average across
the literature (Logan and Hunt, 1987; Bach et al., 2012).
For ρsw(S,T ) we use the MATLAB Gibbs-SeaWater (GSW)
Oceanographic Toolbox (IOC et al., 2010). For dynamic sea-
water viscosity, µ(S,T ), we use the equation of Sharqawy
et al. (2010).

Appendix B: Computational methods

B1 Steady-state solver

Equations (1), (3), (4), and (5) are discretized and collected
into a nonlinear system of equations F (x)= 0, where x is
the concatenated vector of all the tracers. This nonlinear
system is efficiently solved using Newton or quasi-Newton
methods for root finding, which iteratively update the state
vector via xi+1 = xi − J−1

i F i , where F i = F (xi), and usu-
ally Ji = J(xi) is the Jacobian of F at xi . In practice, the
Jacobian factors are not updated at every iteration to save
computational resources (Kelley, 2003). Additionally, to re-
duce the memory required for factorization, we divide the
system into smaller subsystems for P, C, and O2 and then
solve the subsystems iteratively until the entire system has
converged. Specifically, we first solve the P subsystem (DIP,
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POPf, POPs, DOP), then the O2 equation, then the C sub-
system (DIC, POCf, POCs, DOC, PIC, TA), and repeat until
F (xi)≈ 0.

B2 Positivity

In practice, many equations of the PCO2 model are modified
to ensure that some variables remain positive. This is useful,
for example, in Monod factors such as that of O2 in Eq. (2),
to avoid catastrophic cancellation (e.g., if [O2] ≈ −KO2 nu-
merically). Hence, where positivity of a variable X is re-
quired, we replace X with the differentiable approximation
to max(X,0) given by

max(X,0)≈X0 log(1+ eX/X0), (B1)

where X0 is carefully chosen for every variable X to balance
smoothness against accuracy (the larger X0 the smoother
but worse the approximation). Specific values used are X0 =

0.1µM for DIP, 10 µM for DIC and TA, and 1 µM for O2.

B3 Smoothness

Because we are using Newton-type solvers to find the steady
state of the tracer equations, we replace discontinuous or
non-differentiable equations with smooth and differentiable
approximations. For example in Eq. (5) where we abruptly
turn off oxygen utilization for [O2]< [Olim

2 ], we approximate
the Heaviside function by

2(X)=
1
2
(1+ tanh(X/X0)) , (B2)

where X0 controls the smoothness, and the same values of
X0 are used as in Eq. (B1).

B4 Objective function

Our goal is to minimize the mismatch of the steady-state so-
lution to Eqs. (1), (3), (4), and (5) with the corresponding
observations (DIP, DIC, TA, and O2). We measure the dif-
ference of tracer X with its observed values Xobs using the
volume-weighted quadratic mismatch metric

fX =

∫
dV

(
X−Xobs)2∫

dV
(
Xobs−Xobs

)2 , (B3)

where the denominator is the spatial variance of Xobs, which
provides a convenient scale for normalizing the misfit.

The objective function f̂ (p) to be minimized is then sim-
ply defined as the sum of the mismatch metrics for each con-
straining tracer field as

f̂ (p)= f[DIP]+ f[DIC]+ f[TA]+ f[O2]+ c. (B4)

f̂ (p) is a function of the parameters p because [DIP], [DIC],
[TA], and [O2] are taken from the p-dependent steady-state

Table B1. Permissible ranges for optimized parameters.

Parameter Range Unit

pmax 1–50 µM
KDIP 0.01–4 µM
rPIC 1–9 %
w∗PIC 1800–4500 md−1

σ 1–99 %
σf 1–99 %
γf 0.01–1.6 d−1

γs 0.01–0.8 d−1

q10 1–5 –
KO2 2–30 µM
rO2 :C 1.3–1.5 molO2 molC−1

solution. f̂ (p) also includes a small penalty c for the param-
eters, which prevents unrealistic values. In practice, we use
MATLAB’s unconstrained minimizer, fminunc, to find an
optimal p. We note in passing that the minimum of the ob-
jective function f̂ determined in this way is not guaranteed
to be the global minimum given the complex nature of f̂ .
However, during the course of this research, we optimized
many versions of our biogeochemical model and found that
they all converged to a similar minimum.

For the parameter penalty c, we prescribe strict bounds (a
and b) on each optimizable parameter p, such that p remains
in (a,b). We calculate the penalty as c = ω

2
∑
pp̂

2, where the
weight ω = 0.001 ensures that the parameter penalty cost is
smaller than the tracer cost, and p̂ = log(p−a

b−p
) transforms p

from the interval (a,b) to p̂ on the interval(−∞,+∞). The
penalty for each parameter can be understood as a measure
of its negative log-likelihood given a logit-normal distribu-
tion on (a,b) as its prior (with mean 0 and standard devia-
tion 1 for its logit). The specified parameter ranges (a,b) are
collected in Table B1.

Appendix C: Key circulation characteristics

Figure C1 shows the mixed-layer depths (MLDs) used in
OCIM2 and ACCESS-M. For both transport matrices a large
vertical diffusivity of 0.1 m2 s−1 is used within the mixed
layer. The MLD patterns are similar across models except
at high latitudes. Most strikingly, near the Weddell and Ross
seas the ACCESS-M MLDs reach the sea floor, while the
observation-based MLDs used in OCIM2 are only a few hun-
dred meters in these regions. The unrealistically deep mixed
layer in the Weddell Sea was reported for the 500 years AC-
CESS1.3 benchmark run of Bi et al. (2013b), although that
run did not have the deep mixed layer in the Ross Sea that
was present in the ACCESS1.3 runs on which ACCESS-M
is based.
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Figure C1. Annual maximum mixed-layer depth as used in the
OCIM2 (a) and ACCESS-M (b) transport matrices.

Appendix D: Biogeochemical diagnostic computations

D1 Export production

Export production via a given carbon species (POCf, POCs,
DOC, or PIC), referred to here as a specific export pathway,
is calculated using a Green function approach. Below, we de-
tail the computation for POCf as an example; the calculation
for the other pathways is similar. We first replace the non-
linear processes with equivalent linear terms. For POCf we
have

Sf [POCf]= σf (1− σ) UC−Rf [POCf]−Df [POCf] , (D1)

where the local respiration and dissolution rates of Eq. (3)
have been recast in terms of rate coefficients Rf and
Df, diagnosed from the full nonlinear solution as Rf =

RPOCf/[POCf] and Df =DPOCf/[POCf]. Note that with
these coefficients Eqs. (D1) and (3) have the same solution.
We may think of POCf in Eq. (D1) as a linear labeling tracer
that is attached to the actual POCf and participates in nonlin-
ear processes in proportion to the POCf concentration. Linear
labeling tracers have been very useful in a number of contexts
(e.g., Holzer et al., 2014; Pasquier and Holzer, 2018; Holzer
and DeVries, 2022).

Denoting Af = Sf+Rf+Df, the Green function
G(r, t |r ′, t ′) that is solution to

∂tG+AfG= δ(t − t
′) δ(r − r ′) (D2)

gives us the POCf contribution at location r from carbon up-
take at r ′ through the convolution

[POCf](r|r ′)=

t∫
−∞

dt ′G(r, t |r ′, t ′)σf (1− σ)UC(r
′). (D3)

In steady-state discretized matrix form, the dt ′ integral of
the Green function becomes the inverse matrix of the steady-
state operator Af so that

[POCf]= A−1
f σf (1− σ)diag(UC) V−1, (D4)

where diag(UC) is a matrix with UC along its diagonal and
where we have multiplied on the right by V−1 to obtain the
contribution per unit r ′ volume.

The global export per unit volume due to production at r ′

is then obtained by integrating the respiration rate of [POCf]
over r in the aphotic domain �a:

φPOCf(r
′)=

∫
�a

dr3 Rf(r) [POCf](r|r ′). (D5)

In matrix form this becomes

φPOCf
=�Ta VRf A−1

f σf (1− σ)diag(UC) V−1. (D6)

For computational efficiency, we take the transpose and cal-
culate

φTPOCf
= σf (1− σ)V−1 diag(UC) A−Tf Rf V�a. (D7)

D2 Regenerated and preformed DIP, DIC, and O2

Preformed concentrations are obtained by propagating eu-
photic concentrations into the aphotic interior without any
interior sources or sinks. Preformed concentrations are thus
conveniently calculated by solving

T
[
Xpre

]
=2

(
z− zeup

) (
[X] −

[
Xpre

])
/τ0, (D8)

whereX can denote DIP, DIC, or O2,Xpre its preformed part,
and where the term on the right clamps the preformed con-
centration to the total concentration in the euphotic zone with
rapid timescale τ0 = 1s (there is no sensitivity to the exact
value of τ0 as long as it is much smaller than the relevant
transport timescales). In matrix form, Eq. (D8) becomes

Xpre = (T+M0)
−1 M0X, (D9)

where T is the transport matrix, X is the vector of simulated
DIP, DIC, or O2 concentrations, and M0 is a matrix with the
mask vector for the euphotic zone divided by τ0 along the
diagonal.

Conversely, regenerated tracers are obtained by labeling
them at regeneration and removing them upon entry into the
euphotic layer. They can thus be calculated by solving

T
[
Xreg

]
= R−2

(
z− zeup

) [
Xreg

]
/τ0, (D10)

where the regenerated tracer Xreg is clamped to zero in the
euphotic zone, and R is the corresponding regeneration rate
per unit volume (e.g., for POCf-regenerated DIC we use R =
RPOCf ). In matrix form, Eq. (D10) becomes

Xreg = (T+M0)
−1R, (D11)

where R is the vector of the discretized R.
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Appendix E: Sensitivity to BGC model and circulation

For a given metric or parameter Xb,c that depends on bio-
geochemical (BGC) model b and circulation c, we define its
sensitivity to the choice of BGC model as

1Xbgc =
1
ncirc

∑
c

1

Xc

√
1
nbgc

∑
b

(
Xb,c−Xc

)2
, (E1)

where ncirc = 2 is the number of circulations used (OCIM2
and ACCESS-M), nbgc = 2 is the number of BGC models
(PC and PCO2), and Xc is the mean of Xb,c across BGC
models at fixed circulation c. Sensitivity to circulation1Xcirc
is given by interchanging b and c in Eq. (E1).

Code and data availability. The MATLAB code for this work can
be found on Zenodo at https://doi.org/10.5281/Zenodo.8067684
(Pasquier, 2023). The ACCESS-M transport matrix was built from
the “historical” ACCESS1.3 CMIP5 model runs, which are avail-
able at https://esgf.nci.org.au/projects/esgf-nci/ (last access: 19 July
2023; for more details on the ACCESS model used, see, e.g., Bi
et al., 2013a, b) and also include temperature, salinity, sea ice,
and wind fields. The irradiance (photosynthetically available ra-
diation) fields for both the ACCESS-M- and OCIM2-embedded
PCO2 are also from the ACCESS1.3 runs. The OCIM2 transport
matrix and corresponding salinity and temperature fields are avail-
able at https://tdevries.eri.ucsb.edu/models-and-data-products/ (last
access: 19 July 2023; for more details on OCIM2, see DeVries and
Holzer, 2019). For OCIM2, sea-ice and surface-wind data are from
National Centers for Environmental Prediction (NCEP) reanalysis
available at https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.
html (last access: 19 July 2023; for more details see Kalnay et
al., 1996). The gridded phosphate and silicate observations are
from the World Ocean Atlas 2018 (Garcia et al., 2019) available
at https://www.ncei.noaa.gov/access/world-ocean-atlas-2018. The
gridded DIC, O2, and TA observations are from GLODAPv2 (Lau-
vset et al., 2016) available at https://www.glodap.info/index.php/
mapped-data-product/.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-20-2985-2023-supplement.
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